Что толкает воду вокруг двигателя
Перейти к содержимому

Что толкает воду вокруг двигателя

  • автор:

Вода льется—и мелет, толчет, пилит, кует и откачивает воду

Использование энергии речных потоков началось в России еще в глубокой древности. В весьма ранних памятниках русской письменности встречаются такие термины, как «мельник», «мельница». Водяные мельницы в России строили сначала для переработки продуктов сельского хозяйства, прежде всего для привода мукомольных поставов, а затем крупорушек и сукновален. В не столь давние времена практически весь урожай зерновых в России перерабатывался в муку исключительно на водяных и ветряных мельницах; одна мельница строилась на 15-20 сельских домов, а то и чаще.

Но уже в XVI в. водяной двигатель в России используется не только для переработки сельскохозяйственной продукции, но и в металлургии, добыче полезных ископаемых, обработке камня. Примерный перечень технологических операций, выполнявшихся в России в XVIII веке с помощью водяных двигателей, приведен в таблице 01 .

Наибольшее распространение получили именно мельницы. Внешний вид здания мельницы существенно зависел от места ее постройки и от компоновки основного оборудования и назначения мельницы, а также от строительных конструкций сооружения. Так, для северных земель, Карелии характерна простая деревянная конструкция, без каких-либо архитектурных изысков. Мельницы европейской части России имеют отличия в архитектуре от своих северных аналогов. Здание мельницы, построенное в черте города, могло быть выполнено из кирпича или камня, что свидетельствовало о состоятельности владельца.

Принципиальная схема работы водяной мельницы с верхней подачей воды показана на рисунке 01. Вода, поступающая из лотка, падает на большое колесо [01], состоящее из двух ободов одинакового диаметра, соединенных перегородками «лопатками», образующими ковши. Вода, попавшая в верхний ковш, под действием силы тяжести толкает колесо и выливается по мере движения вниз. Отметим, что верхний способ подачи воды обеспечивает большую мощность на вале колеса, но требует строительства гидротехнических сооружений (плотина, запруда) для накопления и подъема воды на высоту колеса.

Вместе с колесом [01]на горизонтальном валу закреплено зубчатое колесо [02]меньшего диаметра, приводящее в движение шестерню [03]на вертикальном валу. На нижнем конце вертикального вала жестко крепился верхний, подвижный жернов (бегун), в то время как нижний (лежняк) оставался неподвижным. Зерно, попадая между камнями, перемалывалось в муку, а тонкость помола определялась зазором между камнями. Жерновые камни изготавливались из особых пород мелкозернистого кварцевого камня или песчаника или же из искусственной смеси.

На соприкасающихся поверхностях бегуна и лежняка создавались достаточно сложные по конфигурации системы бороздок, обеспечивавших перемещение зерна и муки от центра жернова к его периферии, а также вентиляцию и охлаждение жернова. Расстояние между камнями регулировалось специальным механизмом. Размеры камней и частота вращения бегуна выбирались в зависимости от требуемой производительности мельницы и вида размалываемого материала.

Работы по толчению органических и минеральных материалов на мельницах выполняются с помощью толчеи — измельчающей или шелушильной машины ударного действия. Рабочий орган толчеи — пест, совершающий прямолинейное возвратно-поступательное движение в ступе или, чаще на мельницах, системе ступ (как правило, бревен), линейно укрепленных на горизонтальном поворачивающемся валу и оканчивающихся внизу над деревянным слабо наклоненным лотком.

Устройство песта более жесткого и с большей скоростью удара позволяет создавать механизм для обработки металла ударным воздействием. Конструирование механизмов с формой движения рабочего органа, обеспечиваемой исполнительными органами водяной мельницы, — вращательной или возвратно-поступательной, позволяет обеспечить выполнение разнообразных операций.

На рисунке 02 показана простейшая схема преобразования вращательного движения в возвратно-поступательное. Такое преобразование требовалось, например, в пилорамах.

Общим для перечисленных в таблице 01 операций является наличие только механической энергии, которая и вырабатывается водяными колесами путем использования вечно возобновляющейся экологически чистой энергии водных потоков.

Использование энергии воды для совершения повторяющихся механических операций получило в России новое развитие во время промышленного подъема на Урале в начале XVIII века. Водяные двигатели на металлургических заводах, построенных по указу Петра I общим числом более двухсот, приводили в движение меха, подающие воздух в печь, и молоты. Для достижения требуемой мощности таких двигателей, существенно превосходящей мощность мельничного колеса, возникала необходимость в строительстве гидротехнических сооружений для повышения уровня воды, некоторые из которых — пруды, каналы, тоннели, каменные плотины — сохранились до сих пор и в настоящее время являются памятниками культуры, охраняемыми государством.

Вторая половина XVII века и XVIII век — золотое время водяных двигателей, в России и в мире. На Сене построили грандиозную установку для питания водой фонтанов Версаля, состоявшую из 14 колес диаметром 12 метров. От колес приводились в действие поршневые насосы, поднимавшие 3000 тонн воды в сутки на высоту около 200 метров. В Шотландии на бумагопрядильной фабрике работало колесо диаметром около 20 метров и шириной 4 метра. В России в конце XVIII века действовало несколько тысяч гидросиловых установок, главным образом на горных заводах. Самая известная из них — машина для откачки воды из шахт, построенная русским механиком Козьмой Фроловым в 1785 г. на Змеиногорском руднике на Алтае.

Поступление воды в шахты было одной из главных проблем, мешающей работе рудокопов. Без использования машин воду приходилось поднимать вручную; этим непрерывно занимались водоносы, передающие друг другу вверх полные ведра, вниз — пустые. Это была тяжелая и опасная работа, не связанная к тому же непосредственно с добычей руды. Кроме того, постоянно поступающая вода ограничивала глубину шахт. Необходимость в машине для откачки воды на Змеиногорском руднике возникла после истощения верхних слоев земли, ранее богатых золотой и серебряной рудой. Рудник был собственностью царской семьи, так что уменьшение притока в казну драгоценных металлов представляло собой государственную проблему.

Гидросиловая установка Фролова — одна из самых больших, когда-либо созданных в мире. Вода откачивалась отсасывающими насосами, каждый из которых мог поднимать воду не более чем на 10 метров — столб воды такой высоты создает давление, равное атмосферному. Соответственно, для откачки со дна шахты требовался целый каскад насосов — нижний насос откачивал воду в большое корыто, из которого верхний поднимал ее в корыто на следующем уровне. Поршни насосов приводились в движение водяными колесами, самое большое из которых достигало в диаметре 15 метров. Чтобы обеспечить необходимую мощность водяного потока для вращения колес, речку Змеевку перегородили плотиной длиной больше 100 метров и высотой около 25 метров. Образовался пруд площадью несколько квадратных километров.

С запуском машины Фролова рудник в Змеиногорске получил вторую жизнь, добыча драгоценных металлов на нем велась еще около ста лет. Энергия падающей воды использовалась не только для осушения шахт, но и для подъема руды на поверхность и ее обогащения: такую машину Фролов построил на Преображенском руднике.

В XIX веке гидросиловые установки постепенно вытесняются паровыми двигателями. Их преимущества — отсутствие привязки к рекам, возможность обеспечить высокую скорость на валу двигателя, компактность, мобильность и более высокая мощность при сравнимых массе и размерах — оказались решающими. Однако и в начале XX века энергия воды еще использовалась достаточно широко: анкета русского технического общества, проведенная в 1912 г., зарегистрировала 45449 гидросиловых установок общей установленной мощностью 686856 л.с., из них 470962 л.с. вырабатывались водяными колесами.

В конце XIX века водяные двигатели неожиданно получили шанс на возрождение. 30 сентября 1882 г. в США заработала первая в мире гидроэлектростанция. Водяное колесо приводило в движение динамо-машину. Вырабатываемая ею электроэнергия использовалась для освещения жилых домов и производственных помещений на местной фабрике. Со временем водяные колеса заменили турбинами, обладающими более высоким коэффициентом полезного действия и позволяющими использовать не только потенциальную энергию воды, падающей с некоторой высоты, но и кинетическую энергию ее движения. Примечательно, что гидротурбины начали создавать задолго до первых электростанций. В России первые турбины строил в 30-40-х годах XIX века уральский крепостной мастер Игнатий Сафонов, их использовали на заводах. В настоящее время гидротурбины, имеющие размер, сравнимый с размером водяных колес, превосходят их по мощности в сотни раз.

Сегодня новую жизнь гидросиловым установкам дает малая гидроэнергетика. Микро- и мини-ГЭС постепенно получают распространение, особенно в труднодоступных районах, где затруднено централизованное электроснабжение. Конечно, энергию падающей воды используют уже не для помола зерна, а для выработки электричества. На смену деревянным водяным колесам пришли металлические турбины, гидросиловые установки стали более компактными, надежными и менее шумными. С учетом того, что альтернативная энергетика во многих странах поддерживается на государственном уровне, малая гидроэнергетика имеет неплохие перспективы.

Примерный перечень типов технологических операций, выполнявшихся в ХVIII веке в России механическими агрегатами за счет действия водяных двигателей

таблица 01

Технологическая операцияМеханический агрегат
РазмолМельничный постав (мука, солод)
Пороховая мельница
Размолотка материалов для стекольного
производства
ТолчениеКрупноподерка
Маслобойня
Сукновальня
Толчея для пеньки
Толчея для тряпок и бумажный рол
Мусерная толчея в металлургии
Толчея для руды на похверках
Толчейный постав для стекольного
производства
Первичная обработка металлаМолот
Обработка металла дляПлющильный стан
получения готовой продукции
Железорезный стан
Проволочно-волочильный стан
Проволочно-мотальный стан
Сверлильный или расточный стан
Токарный станок для обточки валов
плющильных
и режущих дисков железорезных станов
Станки для производства монет
Первичная обработка дереваПильная мельница
резанием
Подача дутья дляВоздуховный мех
металлургических печей
Подъемно-транспортныеРудоподъемник
операции
Водоподъемник на рудниках
Водяной насос для водоснабжения
Операции в текстильномКрутильно-мотальные станы в шелковом
производствепроизводстве
Агрегаты ситценабивного производства
Прядильная машина
Мотальня
Шлифовально-точильныеТочильные круги для обработки металла
операции
Гранильные станки
Шлифовальный стан

Большое колесо маленького острова

Самое большое в мире действующее водяное колесо находится на одном из островов Ирландского моря в деревне Лакси. Его диаметр — 22 метра, а высота — 18 метров. Колесо было построено в середине XIX века для откачки грунтовых вод из рудников, где добывали свинец, цинк и другие металлы. К тому времени паровые двигатели уже потеснили водяные, однако на острове не было угля, а его доставка стоила довольно дорого. Необходимую энергию для работы насосов, откачивающих воду, могли дать многочисленные горные речки острова. Идею построить водяной двигатель осуществил местный инженер Роберт Кэйсмент. Большие размеры колеса обусловлены тем, что из шахт требовалось поднимать около тонны воды за минуту с глубины в полтора километра. Мощность, развиваемая колесом, должна была составлять порядка мегаватта, или немногим больше тысячи лошадиных сил.

Сейчас колесо для откачки воды уже не используют, его запускают время от времени только для туристов.

  • Журнал «Коммерсантъ Наука» №3 от 21.04.2015, стр. 44

Как же работают минимойки Керхер?

Каждый кто хоть раз пользовался минимойкой знает как это может быть довольно веселое занятие. Ими можно очищать практически любые поверхности вокруг дома и это не займет много времени. Но как все-таки работает аппарат высокого давления? Как он устроен и каков принцип его работы? Давайте посмотрим на минимойку изнутри и совершим путешествие на Завод Керхер в г. Оберзонтхайм, где собирается минимойка Керхер K 7 Full Control.

1260_Titelbild_HD

Как все-таки работает аппарата высокого давления?

Анимационный график покажет принцип работы минимойки Керхер K 7 Full Control. На нем видно где находится мотор, куда поступает вода, как только она попадает в аппарат из садового шланга и как создается высокое давление.

Пример: АДВ Керхер K 7 Full Control

Сердце каждого аппарата электрический мотор, который приводит в движение насос [1]. Для того, чтобы система давления работала корректно, необходима вода, которая подается с помощью садового шланга [2]. Прежде чем вода пройдет через клапана для того, чтобы начать выходить под давлением, она пройдет через двойной контур вокруг мотора и охладит его [3]. Это значительно уменьшает шум при работе и продлевает срок службы аппарата.

Мотор приводит в движение косую шайбу, она в свою очередь приводит в движение 3 поршня, которые ходят вверх и вниз [4]. Аппарат высокого давления K 7 Full Control имеет в общей сложности 3 поршня, каждый из которых работает на забор и подачу воды. Нисходящее движение поршня [6] забирает воду через всасывающий клапан [5] и подает ее в цилиндр поршневой камеры. Когда поршень двигается вверх он толкает воду через клапан давления [7] к инжектору.

Чистящее средство [10] подается к инжектору [8] в случае необходимости. затем вода проходит через насос [9] к пистолету высокого давления.

Конечно же, в реальном времени, все это происходит так быстро, что как только вы включили аппарат, можно сразу нажимать на курок, чтобы начать очистку. Изображенная на картинке минимойка также оснащена LED дисплеем, на пистолете высокого давления, который показывает выбранный уровень давления, а также пример применения данного давления. Это позволяет правильно найти режим работы аппарата, при котором будет достигаться наилучший результат очистки.

Не говоря уже о невероятных результатах очистки, которые достигаются с помощью АВД, можно сэкономить на питьевой воде, т.к при мойке обычным садовым шлангом будет потрачено около 3500 литров воды в чат, тогда как аппарат высокого давления израсходует от 400 до 600 литров. Эффект экономии достигается как раз за счет того, что высокое давление ускоряет процесс очистки.

Можно ли использовать воду вместо антифриза?

вода вместо охлаждающей жидкости

Вода вместо охлаждающей жидкости сегодня может показаться удивительным, но раньше такое решение было нормой. Стоит знать, можно ли заливать воду в систему охлаждения автомобиля и к каким последствиям может привести езда на воде вместо охлаждающей жидкости. Следующая статья развеет любые сомнения на эту тему.

Прочитав эту статью, вы узнаете:

1. Можно ли заливать воду в радиатор автомобиля?

2. Каковы последствия езды на воде вместо охлаждающей жидкости?

3. Смешиваются ли охлаждающие жидкости разных цветов?

Охладит ли радиатор двигатель, если в нем есть вода?

вода вместо охлаждающей жидкости

Да, конечно. Вода является охлаждающей жидкостью в двигателях внутреннего сгорания., в странах с тропическим и тропическим климатом его даже предпочитают охлаждающей жидкости. Все потому, что он быстрее теряет температуру.

Здесь стоит рассмотреть, какими общими свойствами он обладает и что собой представляет охлаждающая жидкость. Большинство этих типов препаратов, доступных на рынке, основаны на этиленгликоле.. Создает идеальную смесь с водой. Оно обогащено присадками, предназначенными для защиты системы охлаждения автомобиля от образования накипи и ржавчины.

Охлаждающая жидкость имеет ряд других преимуществ. Превыше всего его температура замерзания может быть даже ниже 30 ℃, а температура кипения может составлять 110 ℃ и более.. Эти физические свойства определенно лучше, чем у чистой воды., который затвердевает при температуре примерно 0℃ и кипит примерно при 100℃. Таким образом, охлаждающая жидкость приносит пользу как зимой, так и летом.

Также стоит отметить, что в современных автомобилях в процессе работы в системе охлаждения создается давление, что дополнительно повышает температуру кипения содержащейся в ней жидкости.

Если ваши окна запотевают, проверьте это осенью и зимой. Антипара.

Может ли вода в радиаторе иметь негативные последствия?

Однако заполнение системы охлаждения водой имеет множество недостатков, которые в нашем климате определенно доминируют. К ним принадлежат:

  • более низкая температура кипения чистой воды, чем охлаждающей жидкости – летом это может привести к перегреву двигателя, например, в пробке и при включенном кондиционере. В некоторых автомобилях это может привести к серьезным неисправностям, например, деформации или растрескиванию головки;
  • образование накипи в системе охлаждения – растворенные минералы выпадают в осадок из воды при ее нагревании и охлаждении. Осадок затвердевает и образует так называемый камень. Это может привести к засорению каналов потока охлаждающей жидкости в двигателе, радиаторе и отопителе;
  • более быстрый износ водяного насоса – чистая вода имеет худшие смазывающие свойства, чем охлаждающая жидкость, что приводит к более быстрому износу лопаток водяного насоса. Кроме того, урон наносит упомянутый выше камень;
  • ржавление деталей двигателя и системы охлаждения изнутри — чистая вода не защищает от ржавчины, а даже способствует ее образованию;
  • высокая температура замерзания чистой воды — езда по воде требует слива всей жидкости из системы охлаждения зимой и доливки ее перед поездкой. Раньше это было обычным явлением, ведь во времена Польской Народной Республики граждане не имели доступа к теплоносителю, а сегодня такой необходимости нет.

Что будет зимой, если машину залить водой?

Оставление автомобиля на ночь зимой с заполненной водой системой охлаждения может иметь катастрофические последствия для вашего автомобиля. Физик назвал бы замерзание воды кристаллизацией. При затвердевании жидкие частицы начинают организовываться в регулярные структуры. При этом они перемещаются, что приводит к увеличению объема. Вблизи точки замерзания объем этой жидкости самый высокий (около 4 ℃). Меняя свое материальное состояние, он расширяется и, не имея выхода, вызывает разрушение сосуда. И вот что происходит в системе охлаждения автомобиля, наполненной водой. В лучшем случае радиатор потечет, а в худшем — огромная сила, с которой замерзающая вода ударится о стенки, приведет к растрескиванию блока двигателя, что приведет к его полному разрушению..

Держите свою машину в хорошем состоянии, вот и все. рекомендуемый набор автокосметики.

Можно ли смешивать жидкость для радиатора с водой?

вода вместо охлаждающей жидкости

Да, ты можешь сделать это. В аварийных ситуациях доливка воды в систему охлаждения, заполненную специальной жидкостью, абсолютно допустима. и не вызовет никаких неприятных последствий для двигателя. Однако следует помнить несколько основных правил:

  • В систему охлаждения добавляйте только деминерализованную воду! В процессе производства она была очищена от минералов, обычно присутствующих в жидкости и вызывающих образование накипи. Деминерализованная вода широко доступна в гипермаркетах (используется для утюгов), автомобильных магазинах и на заправочных станциях. Категорически избегайте смешивания охлаждающей жидкости с водопроводной или минеральной водой., а если вы вынуждены это сделать, обязательно после устранения неисправности замените содержимое системы охлаждения специальной охлаждающей жидкостью;
  • помни это разбавление охлаждающей жидкости водой меняет ее физические свойства – температуру кипения и замерзания.. Если заправка была большой, например 5 литров воды, то обязательно добавьте в систему концентрат радиаторной жидкости. Он смешивается с водой в двигателе. Для проверки качества охлаждающей жидкости в системе можно использовать одноразовые тестеры, указывающие температуру замерзания жидкости;

Розовый или синий – в чем разница между этими охлаждающими жидкостями?

Цвета обычно не имеют значения. Фактически, большинство охлаждающих жидкостей, представленных на рынке, основаны на этиленгликоле, и в описании продукта можно найти информацию о том, что они смешиваются с другими охлаждающими жидкостями..

Однако принято считать, что, например, красная жидкость посвящена автомобилям концерна Volkswagen. Все потому, что именно такой цвет имеет оригинальная охлаждающая жидкость для автомобилей этой марки, соответствующая стандарту G12.

Цвет охлаждающей жидкости на самом деле предназначен для обозначения того, что система не заполнена водой.. Более того, яркий цвет позволяет легко выявить утечки.

Как выбрать лучшую охлаждающую жидкость?

Руководство по эксплуатации автомобиля поможет правильно выбрать охлаждающую жидкость. Всегда используйте средства, одобренные производителем (это касается и масел, жидкость гидроусилителя руля и т. д.), отвечающих конкретным эксплуатационным стандартам. Если есть сомнения, стоит сходить в автомагазин, где сотрудники подберут нужные. охлаждающая жидкость на основании нет. ВИН автомобиля.

Помнить! Охлаждающая жидкость очень ядовита!

Охлаждающая жидкость ядовита, обращайтесь с ней осторожно! Никогда не выливайте его на землю и не храните в открытых емкостях! Его употребление может привести к смерти даже в малых дозах. поэтому держите его подальше от детей и животных!

Антигравитация это не то что вы думали

В науке есть много теорий об антигравитации, и одно маленькое упущение в области аэрогидродинамики, практическим изучением которого я занимаюсь уже два года. Идя эмпирическим путем, без оглядки на догмы и мнения, я обнаружил серьезные противоречия в науке.

image

В своем предыдущем посте о летающей тарелке habr.com/ru/post/438692 продолжением которого является этот пост, я допустил ошибку. Я написал что инерциоид движется так как написано в Википедии — отталкиваясь от среды. Это так, но есть одно но. Он движется в другую сторону. Там сказано, что когда инерциоид дергается в воде в одну сторону быстро, а в другую медленно, то сопротивление быстрому движению преобладает над медленным, и он плывет в сторону медленного движения. На этом принципе основана идея вибролета Лозовского, на который он получил патент. Зонтик поднимается медленно вверх, и быстро опускается вниз. Разница давлений приводит к движению. Математика это подтверждает. Но зонтик есть зонтик — даже если колебания будут симметричными, он будет двигаться вверх. А вот с симметричным профилем незадача — у меня, как впрочем и у всех инерциоидщиков он движется в сторону быстрого движения, а не так как говорит Википедия, и наука в целом.

Проверить это достаточно легко — надо опустить в воду ладонь, толкнуть резко воду в одну сторону, и плавно отвести ладонь назад. Сопротивление при обратном движении будет намного больше, чем это ожидалось бы в спокойной воде, потому что вода по инерции будет двигаться дальше туда, куда вы ее толкнули изначально. Как бы мелочь, но тогда получается что представление науки о вязкости, о фундаментальных силах которые ее создают — ошибочно?! Выходит, что если по науке птица будет пропускать перьями воздух поднимая крылья, и резко толкать воздух, опуская их, она будет лететь вниз. Махолеты летают, да, но они не выходят на критические углы атаки как птица, замедляя полет, а мне это удалось. Мой топорно простой самолет с инерциоидом на носу, заставляющим его все время задирать нос, практически делает кобру на 0.52 секунде:

Так как же летает птица и причем тут антигравитация? Но не так все просто. Во первых антигравитация это слово, которое применимо ко всему, что движется против гравитации. Это движение при помощи отталкивания от чего-то. Способов ее создания просто не счесть — когда мусор летает по ветру, когда мы подпрыгиваем, в том числе и полет птиц. Когда птица взмахивает крыльями, она генерирует под собой кольцевой вихрь, который движется вслед за крыльями. Вихрь имеет квазикристаллическую структуру, в первом посте я об этом писал, или скорее рисовал. Вихрь это инертный сгусток воздуха, он имеет массу и плотность, большую чем остальной воздух. Птица опирается на него, опуская крыло плавно, так чтоб не разрушить, и позволяет имеющемуся внутри вихря потоку толкать себя. Можно так же сказать, что птица, опуская крыло, отбрасывает вихрь как реактивную массу, прежде сгенерировав ее взмахом.

image

Почти так же и медуза. Сжимаясь и выталкивая из себя воду, она своим лобовым сопротивлением создает впереди себя волну. Волна уходит вперед, а следом за ней идет разреженная зона. Заполняя эту зону, вода образует поток как в ядерном грибе. Он толкает медузу, наполняя ее как парашют. После этого ей остается снова сжатся.

image

Собственно упрощением всего этого и есть летающая тарелка с вибрирующим крылом — резонатором. Поднимающийся и опускающийся с безумной частотой зонтик. Раз уж принято считать, что у тарелок должна быть антигравитация, то пусть так и будет.

Невозможно — скажет специалист, ведь самолеты летают уже давно, и все хорошо изучено. Уравнение Бернулли!

А так ли? Уравнение Бернулли это математическая закономерность, между скоростью потока и давлением. На практике этого достаточно чтобы строить самолеты, но многие авиаторы знают что это уравнение не дает ответ. Ответ может дать фундаментальная наука, но она давно ушла в математические дебри кротовых нор, и стала отдельна от аэродинамики.

Еще Жуковский говорил о том, что причина подъемной силы кроется в тонком и медленном пограничном слое, циркулирующем вокруг крыла. А так же Жуковский, как и другие великие физики, не математики, был сторонником доступно объясняющей гравитацию теории эфира. До того как по миру победным маршем не без поддержки влиятельных лиц прошлась теория Эйнштейна, физиками было проделано много работы для того чтобы объяснить гравитацию и показать ее принцип. Причем не абстрактными искривлениями систем измерений, а практическими опытами. Например мало кому известный опыт Бьеркенса, с вибрирующими на воде шарами. Шары создавали в воде волны и притягивались или отталкивались в зависимости от того, вибрировали они в фазе или полуфазе. Это вам не скатывание шаров в воронку под действием той же необъяснимой гравитации — то что показывают по ТВ — это настоящий физический опыт, который показывает как и почему. Были еще вибрирующие камертоны Гатри, вибрирующие цилиндры Кука, которыми он моделировал электромагнитные явления.

Единственный компонент, недостающий для полной картины — газообразный эфир, которого по Энштейну нет.

Конечно, многие скажут что теория относительности многократно подтвердилась — релятивистская поправка и тд. Но Эйнштейн — математик. И его теория — математическая закономерность, которую можно использовать на практике как и уравнение Бернулли. ТО не доказывает то что газообразного эфира нет. И она не объясняет почему, если воздух толкнуть вперед, он спустя время толкнет вас сзади. Ведь считается что взаимодействие практически моментально, а значит действие должно быть равно противодействию в момент сейчас и в лоб, а не потом и сзади. А вот с точки зрения эфира это вполне понятно, и даже можно смоделировать вибрирующими шарами на воде. Атом — чем не инерциоид? Электронная оболочка это площадь взаимодействия со средой, а ядро это эксцентрик. В первом посту есть рисунок, как распределяется импульс в однородной среде, образуя вихри и волны. Атомы плавают в эфире как виброшары Бьеркенса, притягиваются и отталиваются, входя в резонанс или дисонанс.

Геометрические закономерности создают структуры. Это не отменяет квантованости и виртуальности. Это подразумевает фрактальность. И еще одно объяснение — удлинение атома при движении — результат его продольных колебаний ( Николай Носков)

Если заменить искривление пространства-времени плотностью вещества, кротовые норы вихревыми воронками, а вакуумные флуктуации — тихим плеском светоносной среды и фотоны кавитационными пузырями, то ничего не изменится в математике. Только гравитационные волны станут акустическими, световыми, рентгеновскими — вполне понятными и доступными. И это даст нам возможность ими управлять, использовать их для движения. Космос это бурлящий океан, а не двухмерная решетка из линий. Наша галактика это вихрь, наша солнечная система, наша планета это вихрь, или вихрь из вихрей. Вихрь даже у нас на макушке. Волны и вихри, притяжение и отталкивание, вибрация и течение происходят один из другого. Вибрация атомов проводника создает эфирный вихрь в виде тора, магнитное поле, также как и взмах крыльев создает воздушный кольцевой вихрь. А вся сложность форм — многообразие их сочетаний.

Нет никакого квантового хаоса, есть сложные закономерности, которые трудно понять. Нам часто подкидывают идею, что знание конечно. Есть край земли, небесная твердь, световой барьер… Те кто стремясь к славе пытаются написать теорию всего, охотно следуют этим путем. Но эти идеи всегда оставались в прошлом. Световой барьер так же преодолим как и звуковой. Мощности нужны другие, чтобы махая крыльями из вакуума образовать свет- это да.

И кстати о крыле. Принято считать что крыло обдувается непрерывным потоком. Но если мы рассмотрим движение газа боле внимательно, то увидим, что оно ритмично. Из за обтекания у самолетов начинается флаттер — вибрация крыла, при истекании газов из сопла вибрирует ракета. Это связано с циклом образования и распада вихрей, которые как пружина накапливают и отдают энергию. Это основа всех циклов в природе.

Я смоделировал обтекание крыла в вязкой жидкости, болтая ложкой в супе. В вязкой жидкости пограничный слой намного толще, и отлично видно как он движется. Несмотря на то что он кажется спокойным, на микро уровне это существует постоянное ритмическое движение. Воздух, который вырезается в переднюю верхнюю часть крыла, сжимается. Молекулы сближаясь отталкиваются благодаря своей вибрации, разлетаются, и расталкивают соседние молекулы. Тепловое движение становится быстрей а расстояние между молекулами больше, что уменьшает давление. После этого молекулы начинают притягиваться, выравнивая давление, и воздух схлопывается за крылом. Из за того что воздух над крылом обладает большей энергией в результате удара, он огибает заднюю кромку и ударяет крыло снизу. Он доходит до передней кромки, встречаются с воздухом, набегающим снизу, и создает давление под крылом.

image

Этим объясняется противоток у передней кромки, который в аэродинамической трубе до последнего заставляет струю дыма отклоняться вверх, даже когда она находитсяя в самом низу. А ламинарный профиль быстрей, потому что огибающий заднюю кромку воздух толкает крыло и вверх и вперед благодаря наклону нижней плоскости. Именно высвобождаемая ударом крыла о воздух тепловая энергия — собственное колебательное движение молекул, и создает подъемную силу. Когда пограничный слой срывается с законцовок крыльев, он высвобождает накопленную энергию, образуя огромные турбулентные вихри. Машущий полет эффективен именно тем, что он позволяет вернуть крыло в исходное положение и получить эту энергию. Поэтому эффективность вибролета — летающей тарелки может быть гараздо выше, чем это полагает АГД. Если учесть резонанс — цикличность образования и распада турбулентных вихрей, то это даст намного больше при автоматической настройке оптимальной частоты. А при очень большой частоте мы увидим свет, от схлопывания кавитационных пузырьков воздуха, потом от шаровых молний, и это уже энергия ядерного синтеза, а не простого стуканья молекул. И тогда все будет выглядеть так, как и должно выглядеть нормальное НЛО.

Пока что выглядит нереальным, но даже при моих возможностях я сделал вибродвигатель, который выдает намного большую мощность частоту чем обычный динамик при той же мощности и весе. Опять же — неожиданный синтез инерциоида с вечным магнитным двигателем, которые оказались совсем не тем что про них думают и работают совсем не так.

Что касается монолитного легкого крыла из сверхпрочного металла — патрубки для ракет уже печатают на принтере уже сейчас. Это дело времени. А суперумное управление сейчас уже не проблема. Только денег стоит. Ну а пока делаю из того что есть пенопласт и бамбук. Но даже так это работает.

А теперь разбор полетов. В этом видео я постарался как можно наглядней показать как это работает.

Сначала принцип движения на воде. Гидродинамический профиль имеет асимметричную форму, и его колебания тоже асимметричны. Как я убедился, и то и другое дает тот же эффект, так или иначе влияя на скорость и направление потока. Здесь видно, что длина волн сзади и впереди отличается. Если бы водоем был побольше, мы бы увидели интерферентную картину волн, подобную той что перемещает частицы при акустической левитации. Для движения в космосе можно увеличить частоту, и тогда это будут микроволны. Это чем то напоминает принцип ЭМ драйв, но только тот делает волны внутри себя, что не имеет никакого смысла. Насколько мне известно, эффект Хатчинсона основан на интерференции электромагнитных волн, что имеет сходство с акустической левитацией.

Теперь собственно полет. Мне часто говорят что даже фрисби летает лучше. Естественно, даже кирпич далеко летит, если его швырнуть хорошо. Но здесь речь идет об очень легком аэродинамическом профиле, который если кинуть сильней, сразу же перевернется от избыточного давления снизу. Поэтому я кидаю свою тарелку не сильно, но придавая ей вращение, для того чтобы она летела со скоростью, при которой набегающий поток ее не перевернет. Эффект, создаваемый двигателем, приводит к тому что давление под ней накапливается раньше, что заставляет ее переворачиваться даже в этом случае. Единственный вариант, при котором она более или менее летит, это бросок с наклоном в право. При выключенном двигателе это приводит к еще большему наклона, а при включенном воздушная подушка позволяет ей удерживать некоторое равновесие и идти по ровной глиссаде. Но в конце концов давление накапливается все равно, и она переворачивается. Если бы двигатель имел управление как гороскоп, она пролетела бы дальше, но пока что я подобными технологиями не располагаю. На данный момент я имею только один практический эффект — из за меньшей потери высоты ловить ее стало легче.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *