Для чего нужен балансирующая пружина
Перейти к содержимому

Для чего нужен балансирующая пружина

  • автор:

Весна

В этой статье объясняется, что такое пружина, также называемая пружиной. Кроме того, вы узнаете о различных типах пружин и их применении.

Что такое весна?

Пружина (или пружина ) — это металлическое тело, согнутое в виток, способное возвращаться к своей форме после сжатия или расширения. Другими словами, пружина — это упругий элемент, который не деформируется постоянно, но после прекращения воздействия на пружину силы возвращается к исходной форме.

Пружины изготавливаются из разных материалов, хотя наиболее распространенным материалом является нержавеющая сталь, также используются пластмассы или сплавы, содержащие углерод, хром, кремний или другие компоненты.

Одной из характеристик пружины является то, что когда она сжимается или растягивается относительно своего исходного положения, она оказывает силу, пропорциональную ее удлинению, но в противоположном направлении. Ниже мы увидим, как рассчитывается сила упругости пружины.

Эта особенность означает, что пружина имеет множество применений в технике. Как правило, пружины предназначены для обеспечения сопротивления или смягчения внешнего напряжения. Ниже мы также увидим, для чего нужна пружина.

Типы пружин

Типы пружин :

Обратите внимание, что обычно типы пружин классифицируются на основе приложенной к ним силы нагрузки, но существуют и другие критерии, позволяющие классифицировать их по другим типам.

Ниже вы можете увидеть объяснение каждого типа пружины, а также пример фотографии, чтобы вы могли увидеть, как выглядит каждый тип пружины.

Натяжение пружины

Как следует из названия, пружина растяжения работает за счет растяжения, поэтому пружина растягивается при приложении к ней силы. Эти типы пружин обычно имеют крючок на одном конце, чтобы их было легче растягивать или подвешивать груз.

пружина растяжения

Пружина сжатия

Пружины сжатия предназначены для сжатия, поэтому чем больше силы прикладывается к пружине, тем сильнее она сжимается. Пружина сжатия используется в механизме многих машин для смягчения нагрузок.

Пружина сжатия

изгибающая пружина

Нагрузка на изгибающую пружину приложена перпендикулярно. Таким образом, пружина поглощает нагрузку путем изгиба, а затем возвращается к исходной форме, когда приложенная сила прекращается. Этот тип пружины используется, например, в автомеханике.

изгибающая пружина

Пружина кручения

Торсионная пружина во время работы вращается сама по себе, поскольку вместо приложения осевой нагрузки к ней прикладывается крутящий момент. Таким образом, конец пружины этого типа вращается при приложении к нему нагрузки.

Пружина кручения

Другие типы пружин

Наконец, следует отметить, что существуют также пружины, способные работать с разными видами усилий. Например, существуют пружины, которые могут работать как на тягу, так и на сжатие или даже кручение.

весенние аппликации

Пружина имеет множество применений, как для повседневного использования, так и для промышленного использования инструментов и машин. Ниже вы можете увидеть, для чего нужна пружина.

  • Пружину или пружину можно использовать для привода, поскольку энергию, накопленную при сжатии пружины, можно использовать для питания механических устройств, например механических часов. Привод останавливается, когда пружина снова расслабляется.
  • Силу, создаваемую пружиной, можно использовать в качестве противодействующей силы, например, в пружинных балансах или амортизаторах.
  • Пружина также используется в механизмах транспортных средств, фрикционы или дверные тормоза имеют для своей работы пружины.
  • Пружины также можно комбинировать для распределения приложенной нагрузки, тем самым преобразуя нагрузку, оказываемую на большой площади, в более равномерную нагрузку. Например, многие матрасы имеют встроенные пружины для распределения веса тела.
  • Наконец, пружины также используются для уменьшения последствий ударов, поскольку они могут действовать как амортизаторы.

сила упругости пружины

Упругая сила, также называемая восстанавливающей силой, представляет собой силу, действующую на упругую пружину при ее деформации. Точнее, сила упругости имеет ту же величину и направление, что и сила, деформировавшую пружину, но ее направление противоположно.

сила упругости пружины

Чтобы рассчитать силу упругости, действующую на пружину, необходимо умножить постоянную упругости пружины на ее смещение, а затем изменить знак результата. Таким образом , формула силы упругости пружины выглядит следующим образом:

  • – сила упругости, выраженная в ньютонах.
  • — упругая постоянная пружины, единицы измерения — Н/м.
  • — удлинение пружины при приложении внешней силы, выраженное в метрах.

Примечание . Знак минус просто указывает на то, что направление силы упругости противоположно направлению внешней силы, действующей на пружину. Важно то, что модуль упругой силы эквивалентен упругой постоянной, умноженной на смещение.

Эта формула известна как закон упругости Гука.

энергия весны

Потенциальная энергия упругости, или просто энергия упругости, — это энергия, накопленная внутри пружины за счет работы, совершаемой прилагаемой ею силой. Итак, упругая потенциальная энергия – это вид потенциальной энергии, связанный с силой упругости пружины или пружины.

Формула для расчета потенциальной энергии упругости пружины :

E_p=\cfrac<1></p>
<p>\cdot k\cdot x^2″ width=»108″ height=»38″ /></p>
<ul>
<li> — упругая потенциальная энергия пружины, единицей которой в Международной системе является джоуль (Дж).</li>
<li> — упругая постоянная пружины, единицы измерения — Н/м.</li>
<li> — расстояние до положения равновесия, выраженное в метрах.</li>
</ul>
<h2>Все, что вы хотели знать о пружинах: основные типы, применение и выбор</h2>
<p>Статья рассказывает о пружинах: что это такое, какие свойства они имеют, какие типы пружин существуют, где их применяют, как можно расчитать и изготовить пружину, а также как правильно ухаживать за ними.</p>
<p>Все, что вы хотели знать о пружинах: основные типы, применение и выбор обновлено: 9 сентября, 2023 автором: Научные Статьи.Ру</p>
<p>Помощь в написании работы</p>
<h3>Введение</h3>
<p>Добро пожаловать на лекцию по сопромату! Сегодня мы будем говорить о пружинах – удивительных устройствах, которые находят применение во многих областях нашей жизни. Прежде чем мы погрузимся в детали, давайте определим, что такое пружины и какие основные свойства они имеют. Мы также рассмотрим различные типы пружин, их применение, а также способы расчета и изготовления. Наконец, мы обсудим вопросы ухода и обслуживания пружин. Готовы начать? Тогда давайте приступим!</p>
<p>Нужна помощь в написании работы?</p>
<p>Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим <b>бесплатно</b>.</p>
<h3>Типы пружин</h3>
<p>Пружины – это упругие элементы, которые могут деформироваться под действием внешней нагрузки и возвращаться в свое исходное положение после прекращения нагрузки. Существует несколько различных типов пружин, каждый из которых имеет свои особенности и применение.</p>
<h4>Сжатие пружины</h4>
<p>Сжатие пружины – это наиболее распространенный тип пружин, который сжимается под действием внешней силы. Они имеют форму цилиндра с открытыми концами и обычно используются для амортизации ударов и поддержания силы в различных механизмах.</p>
<h4>Растяжение пружины</h4>
<p>Растяжение пружины – это пружина, которая растягивается под действием внешней силы. Они имеют форму прямоугольной петли и обычно используются в различных механизмах для создания силы тяги или поддержания натяжения.</p>
<h4>Изгибная пружина</h4>
<p>Изгибная пружина – это пружина, которая деформируется при изгибе. Они имеют форму петли и обычно используются в различных механизмах для создания силы изгиба или поддержания формы.</p><div class='code-block code-block-2' style='margin: 8px 0; clear: both;'>
<!-- 2aivorobiev -->
<script src=

Витая пружина

Витая пружина – это пружина, которая имеет форму спирали. Они обычно используются в механизмах для создания силы сжатия или растяжения, а также для амортизации ударов.

Коническая пружина

Коническая пружина – это пружина, которая имеет форму конуса. Они обычно используются в механизмах, где требуется изменение силы или поддержание постоянной силы при изменении длины пружины.

Плоская пружина

Плоская пружина – это пружина, которая имеет плоскую форму. Они обычно используются в механизмах для создания силы сжатия или растяжения, а также для поддержания формы или натяжения.

Каждый из этих типов пружин имеет свои особенности и применение в различных областях, включая автомобильную промышленность, электронику, медицинское оборудование и многое другое.

Применение пружин

Пружины широко используются в различных областях и механизмах благодаря своим уникальным свойствам упругости и возможности возвращаться в исходное положение после деформации. Вот некоторые из основных областей, где применяются пружины:

Автомобильная промышленность

В автомобильной промышленности пружины используются в подвеске, амортизаторах, сцеплении и других механизмах. Они помогают обеспечить комфортную поездку, а также поддерживают стабильность и безопасность автомобиля.

Электроника

В электронике пружины используются в различных устройствах, таких как кнопки, переключатели, разъемы и пружинные контакты. Они обеспечивают надежное соединение и обратную связь в электронных устройствах.

Медицинское оборудование

В медицинском оборудовании пружины используются в различных устройствах, таких как стетоскопы, шприцы, зажимы и пружинные механизмы. Они помогают обеспечить точность и надежность работы медицинского оборудования.

Промышленное оборудование

В промышленном оборудовании пружины используются в различных механизмах, таких как пресс-станки, клапаны, двери и пружинные механизмы. Они помогают обеспечить правильное функционирование и безопасность промышленного оборудования.

Мебельная промышленность

В мебельной промышленности пружины используются в матрасах, креслах, диванах и другой мебели. Они обеспечивают комфорт и поддержку, а также позволяют мебели возвращаться в исходное положение после использования.

Игрушки и спортивные товары

В игрушках и спортивных товарах пружины используются в различных механизмах, таких как пружинные прыгуны, пружинные мячи и пружинные механизмы. Они добавляют веселье и динамичность в игрушки и спортивные товары.

Это лишь некоторые из множества областей, где применяются пружины. Их уникальные свойства и разнообразие типов позволяют использовать их во многих различных механизмах и приложениях для обеспечения функциональности, комфорта и безопасности.

Расчет пружин

Расчет пружин является важной частью проектирования и изготовления пружинных механизмов. Он позволяет определить необходимые параметры пружины, такие как жесткость, длина, диаметр проволоки и количество витков, чтобы она выполняла свою функцию эффективно и безопасно. Вот основные шаги при расчете пружин:

Определение требуемых параметров

Первым шагом при расчете пружины является определение требуемых параметров, которые зависят от конкретного применения пружины. Некоторые из основных параметров включают жесткость пружины (коэффициент упругости), максимальную нагрузку, длину хода, диаметр проволоки и количество витков.

Выбор типа пружины

Существует несколько типов пружин, таких как цилиндрические пружины, конические пружины и плоские пружины. Выбор типа пружины зависит от требуемых параметров и конкретного применения. Каждый тип пружины имеет свои особенности и преимущества, которые могут быть учтены при выборе.

Расчет жесткости пружины

Жесткость пружины определяет ее способность сопротивляться деформации под действием нагрузки. Расчет жесткости пружины основан на законе Гука, который устанавливает линейную зависимость между силой, действующей на пружину, и ее деформацией. Формула для расчета жесткости пружины выглядит следующим образом:

К = (F * L) / ΔL

  • К – жесткость пружины (коэффициент упругости)
  • F – сила, действующая на пружину
  • L – длина пружины в ненагруженном состоянии
  • ΔL – изменение длины пружины под действием нагрузки

Расчет длины и диаметра проволоки

Длина и диаметр проволоки пружины также являются важными параметрами, которые должны быть рассчитаны. Длина пружины зависит от требуемой длины хода и количества витков, а диаметр проволоки зависит от требуемой жесткости и максимальной нагрузки. Существуют стандартные таблицы и формулы, которые помогают определить оптимальные значения для длины и диаметра проволоки.

Проверка безопасности и эффективности

После расчета всех параметров пружины необходимо проверить ее безопасность и эффективность. Производится анализ напряжений и деформаций, чтобы убедиться, что пружина не будет перегружена и не превысит предельные значения. Если необходимо, можно внести корректировки в параметры пружины, чтобы обеспечить ее безопасность и эффективность.

Расчет пружин является сложным процессом, требующим знания физических законов и математических методов. Он позволяет определить оптимальные параметры пружины, чтобы она работала надежно и эффективно в конкретном механизме или устройстве.

Изготовление пружин

Изготовление пружин – это процесс создания пружинных механизмов из проволоки или ленты. Этот процесс включает в себя несколько этапов, включая выбор материала, изготовление заготовки, формовку пружины и обработку поверхности. Вот подробное описание каждого этапа:

Выбор материала

Первым шагом при изготовлении пружин является выбор подходящего материала. Материал должен обладать необходимыми свойствами, такими как прочность, упругость и устойчивость к коррозии. Наиболее распространенными материалами для изготовления пружин являются углеродистые стали, нержавеющие стали и сплавы.

Изготовление заготовки

После выбора материала необходимо изготовить заготовку пружины. Заготовка представляет собой отрезок проволоки или ленты, который будет использоваться для формовки пружины. Заготовка должна иметь определенную длину, которая зависит от требуемой длины пружины и количества витков.

Формовка пружины

Формовка пружины – это процесс придания заготовке желаемой формы и размеров. Формовка может быть выполнена с помощью специальных пружинных машин или вручную с использованием инструментов. Во время формовки заготовка изгибается и скручивается, чтобы создать спиральную форму пружины. Важно следить за точностью формовки, чтобы пружина имела правильную геометрию и функционировала корректно.

Обработка поверхности

После формовки пружины может потребоваться обработка поверхности. Это может включать шлифовку, полировку или покрытие пружины специальным материалом. Обработка поверхности может быть необходима для улучшения эстетического вида пружины, защиты от коррозии или улучшения ее свойств, таких как снижение трения или увеличение износостойкости.

Контроль качества

После изготовления пружины необходимо провести контроль качества. Это включает проверку геометрии пружины, измерение ее параметров (длина, диаметр проволоки, количество витков) и проверку ее функциональности. Контроль качества помогает убедиться, что пружина соответствует требованиям и будет работать надежно и эффективно.

Изготовление пружин – это сложный процесс, требующий определенных навыков и оборудования. Важно следовать правильной последовательности этапов и обеспечить высокое качество изготовления пружин для их успешного использования в различных механизмах и устройствах.

Уход и обслуживание пружин

Регулярная проверка

Для поддержания надлежащего состояния пружин необходимо регулярно их проверять. Это включает в себя осмотр на наличие повреждений, трещин, износа или деформаций. Если обнаружены какие-либо проблемы, пружины должны быть заменены или отремонтированы.

Смазка

Для обеспечения плавного движения и уменьшения трения пружин необходимо регулярно смазывать. Для этого можно использовать специальные смазки или масла, которые подходят для работы с пружинами. Смазку следует наносить на поверхность пружины и в места контакта с другими элементами механизма.

Защита от коррозии

Пружины могут подвергаться воздействию влаги, пыли и других агрессивных сред. Чтобы предотвратить коррозию, рекомендуется наносить защитное покрытие на поверхность пружин. Это может быть покрытие из специальных материалов или просто покраска пружин. Защитное покрытие поможет продлить срок службы пружин и сохранить их работоспособность.

Правильное хранение

Пружины, которые не используются, должны быть правильно хранены. Они должны быть защищены от воздействия влаги, пыли и других вредных факторов. Рекомендуется хранить пружины в сухом и чистом месте, вдали от прямых солнечных лучей и экстремальных температур.

Правильная установка и использование

При установке и использовании пружин необходимо соблюдать правила и рекомендации производителя. Неправильная установка или использование может привести к повреждению пружин или других элементов механизма. Важно следовать инструкциям и не превышать предельные нагрузки, указанные для пружин.

Соблюдение этих рекомендаций по уходу и обслуживанию пружин поможет поддерживать их работоспособность, продлит срок службы и обеспечит безопасность при использовании. Регулярная проверка, смазка, защита от коррозии, правильное хранение и использование – ключевые моменты в уходе за пружинами.

Сравнительная таблица пружин

Тип пружины Описание Преимущества Недостатки Применение
Сжатие Пружина, которая сжимается при нагрузке Простота конструкции, высокая надежность Ограниченный ход сжатия Автомобильные подвески, матрасы
Растяжение Пружина, которая растягивается при нагрузке Большой ход растяжения, высокая гибкость Меньшая надежность по сравнению с пружинами сжатия Тормозные системы, промышленные механизмы
Изгиб Пружина, которая изгибается при нагрузке Высокая гибкость, равномерное распределение нагрузки Ограниченный ход изгиба Дверные замки, стулья
Торсион Пружина, которая вращается при нагрузке Высокая жесткость, равномерное распределение нагрузки Сложная конструкция, ограниченный ход вращения Автомобильные подвески, дверные петли

Заключение

Пружины – это упругие элементы, которые используются для хранения и передачи энергии. Они имеют ряд основных свойств, таких как жесткость, коэффициент упругости и деформация. Применение пружин широко распространено в различных отраслях, включая машиностроение, автомобильную промышленность, электронику и многое другое. Расчет и изготовление пружин требуют определенных знаний и навыков. Важно также уделять внимание уходу и обслуживанию пружин, чтобы обеспечить их долговечность и безопасность.

Все, что вы хотели знать о пружинах: основные типы, применение и выбор обновлено: 9 сентября, 2023 автором: Научные Статьи.Ру

Сферы применения разных типов пружин. основные разновидности пружин кручения

Конструкция пружины в виде мини-блока имеет витки, диаметр которых подобран таким образом, чтобы витки входили друг в друга, когда пружина сильно сжимается: отсюда и название — мини-блок.

Такое конструктивное решение может уменьшить длину блока в сжатом состоянии таким образом, что она не будет превышать диаметра пружинной проволоки более, чем в два раза. Таким образом, получается очень маленький блок, и следовательно, экономится пространство. Это может быть ценным для конструкции задней части автомобиля, если там, например, необходим увеличенный багажник.

Важно отметить, что способность витков входить один в другой регулируется только изменением диаметра витков, и не зависит от типа используемого материала (коническая проволока или проволока с постоянным сечением). Для такой конструкции иногда используется конический материал, что делает пружину более легкой, но с другой стороны, увеличивает риск преждевременной поломки конечных витков

Более подробную информацию об этом можно прочесть в нашей технической брошюре.

Пружины в виде мини-блока могут иметь как линейные, так и прогрессирующие характеристики, что достигается использованием либо конической, либо параллельной проволоки. При этом часто у них линейный шаг, поскольку уменьшенный диаметр проволоки компенсирует уменьшение внешнего диаметра пружины. Для этой конструкции Lesjöfors всегда использует проволоку с постоянным сечением; это отвечает требованиям к мини-блокам и требованиям по нагрузке, а также позволяет избежать риска преждевременной поломки конечных витков.

Составные пружины

Пружина составного типа используются в случае больших нагрузок. Среди особенностей отметим:

  1. В большинстве случаев изделие работает на сжатие. При этом все элементы имеют одинаковую длину.
  2. Составной вариант исполнения представлен сочетанием нескольких, которые имеют различный диаметр витков и вставляются друг в друга. При этом все они имеют общую ось, за счет чего обеспечивается равномерное распределение нагрузки.
  3. Для снижения вероятности перескоков витков, из-за чего не происходит сжатие, их выполняют в противоположном направлении закручивания.

Подобный вариант исполнения получил весьма широкое распространение, устанавливается на автомобилях и другом оборудовании. Не стоит забывать о том, что за счет увеличения количества пружин существенно повышается стоимость изделия.

На что обращать внимание при выборе

Существует несколько факторов, которые нужно учитывать при выборе пружин.

Жесткость

Жесткость влияет не только на комфорт при езде в автомобиле, но и при нагрузке на другие элементы его ходовой системы. На мягких пружинах более комфортно ездить, особенно по дорогам с плохим покрытием. Однако их нежелательно ставить на машину, которая часто перевозит значительные грузы. И наоборот, жесткие пружины лучше ставить на автомобили, предназначенные для перевозки тяжестей. Особенно это актуально для задних амортизаторов.

В контексте жесткости актуальна еще одна ситуация. Зачастую при покупке новых пружин (особенно для ВАЗ-классики) у пары одинаковых, входящих в один комплект, пружин может быть разная жесткость. Естественно, это приводит к тому, что машина перекашивается вправо или влево. Проверить при покупке их практически невозможно, поэтому решить проблему можно двумя путями.

Первый заключается в установке упомянутых выше проставок. С их помощью можно выровнять клиренс машины и добиться равномерной жесткости подвески. Второй путь заключается в покупке более качественных пружин, обычно от проверенных производителей, обычно зарубежных.

Жесткость — это физическая величина, которая в пружинах зависит от следующих их параметров:

  • Диаметр прутка. Чем он больше — тем больше и жесткость. Однако тут нужно учитывать форму пружины и диаметр прутка, из которого изготовлен каждый виток. Бывают пружины с переменными общими диаметрами и диаметрами прутка. О них позже.
  • Внешний диаметр пружины. При прочих равных показателях чем больше диаметр — тем ниже жесткость.
  • Количество витков. Чем их больше — тем ниже жесткость. Это связано с тем, что пружина будет сгибаться по своей вертикальной оси. Однако тут нужно учитывать дополнительные параметры. В частности, пружина с малым количеством витков будет иметь малый ход, что во многих случаях недопустимо.

Длина

Чем длиннее будут пружины — тем больше будет клиренс автомобиля. Для каждой конкретной модели автомобиля в его технической документации прямо указывается соответствующее значение. В некоторых случаях длина передних и задних пружин будет отличаться. В оптимальном случае необходимо придерживаться рекомендаций производителя. Отступление от них возможно лишь для тюнинга либо в случае, использования автомобиля для грузоперевозок.

Параметры витков

Под общим названием в данном случае подразумевается диаметр и количество витков. От этих двух параметров зависит общая жесткость пружины. К слову, некоторые модели пружин имеют неровную форму с витками различных диаметров. В частности, с узкими витками по краям, и широкими в середине.

Однако такие витки имеют и разный диаметр металлического прутка. Так, находящиеся в середине пружины витки большого диаметра сделаны из прутка большого диаметра. А крайние маленькие витки — из прутка малого диаметра. Большие прутки отрабатывают на больших неровностях, а маленькие — соответственно, на маленьких. Однако из-за того, что маленькие прутки сделаны из более тонкого металла, то они ломаются чаще всего.

Такие пружины, в основном, оригинальные, то есть, те, которые были установлены с завода. На них ездить комфортнее, но их ресурс ниже, особенно при постоянной езде машины по плохим дорогам. Неоригинальные же пружины обычно изготавливают из прутка одинакового диаметра. Это уменьшает комфорт езды на машине, однако увеличивает общий ресурс пружины. Кроме того, такая пружина будет стоить дешевле, поскольку технологически ее изготовить проще. Что выбирать в том или ином случае — решает каждый сам для себя.

Типы

Все амортизационные пружины делятся на пять основных типов. В частности:

  • Стандартные. Это пружины с характеристиками, прописанными в рекомендациях изготовителя машины. Обычно они предназначаются для использования в городских условиях или в условиях ограниченного бездорожья.
  • Усиленные. Их, как правило, используют на автомобилях, предназначенных для перевозки больших грузов. Например, в вариантах, когда базовой моделью машины является седан, а усиленным вариантом — фургон или пикап с грузовым отделением сзади.
  • С повышением. Такие пружины используют для увеличения клиренса (дорожного просвета) автомобиля.
  • С занижением. С их помощью, наоборот, уменьшают дорожный просвет. Это меняет динамические характеристики машины, а также ее управляемость.
  • С переменной жесткостью. Такие пружины обеспечивают комфортную езду при различных дорожных условиях.

Выбор того или иного типа пружин зависит от условий эксплуатации машины и рекомендаций завода-изготовителя.

Виды пружин

Витая цилиндрическая пружина сжатия Тарельчатые пружины

Место установки тарельчатых пружин

По виду воспринимаемой нагрузки

  • пружины сжатия;
  • пружины растяжения;
  • пружины кручения;
  • пружины изгиба.

Пружины растяжения

— рассчитаны на увеличение длины под нагрузкой. В ненагруженном состоянии обычно имеют сомкнувшиеся витки. На концах для закрепления пружины на конструкции имеются крючки или кольца.

Пружины сжатия

— рассчитаны на уменьшение длины под нагрузкой. Витки таких пружин без нагрузки не касаются друг друга. Концевые витки поджимают к соседним и торцы пружины шлифуют. Длинные пружины сжатия, во избежание потери устойчивости, ставят на оправки или стаканы. Волновые пружины, навитые из синусоидальной металлической ленты, отличаются более высокой устойчивостью благодаря соприкасающимся вершинам волн соседних витков.

Презентация на тему: Классы пружин «а», «в» и «с», какие из них лучше Что означают цветные метки на пружинах: нужно знать Маркировка жесткости пружин по цвету ваз Классы жесткости пружин ваз Волновая передача Типы пружин Применение пружин сжатия и особенности их изготовления Пружины подвески: все, что нужно знать при выборе и эксплуатации - журнал движок. Виды и типы пружин: конические, составные, призматические

Также пружина Бурдона

— трубчатая пружина в манометрах для измерения давления, играющая роль чувствительного элемента.

Витки пружин растяжения-сжатия под действием постоянной по величине силы испытывают напряжения двух видов: изгиба и кручения.

Пружина изгиба

— применяется для передачи упругих деформаций при незначительных изменениях геометрических размеров пружины или пакета пружин (рессоры, тарельчатые пружины).Они имеют разнообразную простую форму ( торсионы, стопорные кольца и шайбы, упругие зажимы, элементы реле и т.п.)

Пружины кручения

— могут быть двух видов:

  • торсионные — стержень, работающий на кручение (имеет большую длину, чем витая пружина)
  • витые пружины, работающие на кручение (как в бельевых прищепках, в мышеловках и в канцелярских дыроколах).

По конструкции

  • витые цилиндрические (винтовые);
  • витые конические (амортизаторы);
  • спиральные (в балансе часов);
  • плоские;
  • пластинчатые (например, рессоры);
  • тарельчатые;
  • волновые;
  • торсионные;
  • жидкостные;
  • газовые.

Типы и виды пружин

Как ранее было отмечено, изготавливаются различные виды пружин, все они обладают своими определенными особенностями, которые стоит учитывать. Классификация проводится по конструктивным признакам. Выделяют следующие типы пружин:

Винтовые. Эта разновидность встречается в различных механизмах, устанавливается практически везде, к примеру, в автомобилях. При этом выделяют следующие типы автомобильных пружин: цилиндрические и конические, а также с переменным диаметром. Следует учитывать, что рассматриваемое изделие представлено витками с одинаковым и различным диаметром. Довольно распространенный признак применения заключается в установке пружинных амортизаторов, которые являются важным элементом конструкции автомобиля. В некоторых случаях проводится установка пружины с переменным шагом витков. Торсионные. Во многом этот вариант исполнения напоминает предыдущий, но при этом работает на кручение и изгиб. Подобная форма пружины позволяет устанавливать ее в качестве основного элемента подвески. Этот же механизм устанавливается для открытия и закрытия дверей, обеспечения функциональности противовесов. Спиральные. Этот вариант исполнения напоминает плоский вид пружины, который закручивается по спирали в виде ленты. Применяется устройство в качестве элемента для накопления кинетической энергии, освобождение которой происходит в определенных случаях. Примером можно назвать настенные или наручные часы, а также другие подобные механизмы. Тарельчатые

Рассматривая классификацию пружин следует уделить внимание тарельчатому варианту исполнения. Этот вариант исполнения не напоминает стандартный вид пружины, так как состоит из нескольких последовательных дисков, соединенных между собой. Основным преимуществом этого варианта исполнения можно назвать слабую степень деформации даже в случае оказания высокой нагрузки

Основным преимуществом этого варианта исполнения можно назвать слабую степень деформации даже в случае оказания высокой нагрузки

Зачастую устанавливается в случае изготовления предохранительных клапанов. Волновые. Этот вид представлен изогнутой по синусоиде металлической лентой, которая плавно накручивается по спирали. Достоинством можно назвать относительно небольшие размеры, из-за высокой точности применяются при создании опорных узлов, подшипников и арматуры, которая перекрывает поток при необходимости. Газовые. Этот вариант исполнения отводится в особую категорию, так как при изготовлении не применяется проволока, а газ вместе с поршнем. Высокая стоимость определена сложностью конструкции, однако она может гасить вибрации и нагрузки с высокой эффективностью.

Основным преимуществом этого варианта исполнения можно назвать слабую степень деформации даже в случае оказания высокой нагрузки. Зачастую устанавливается в случае изготовления предохранительных клапанов. Волновые. Этот вид представлен изогнутой по синусоиде металлической лентой, которая плавно накручивается по спирали. Достоинством можно назвать относительно небольшие размеры, из-за высокой точности применяются при создании опорных узлов, подшипников и арматуры, которая перекрывает поток при необходимости. Газовые. Этот вариант исполнения отводится в особую категорию, так как при изготовлении не применяется проволока, а газ вместе с поршнем. Высокая стоимость определена сложностью конструкции, однако она может гасить вибрации и нагрузки с высокой эффективностью.

Рассматривая все о пружинах следует уделить внимание также классификации по характеру нагрузки. По этому признаку выделяют следующие варианты исполнения:

  1. Изгиб. Подобный вид пружины при воздействии силы несущественно меняет свои размеры. Распространены торсионные пакеты, а также тарельчатые виды пружины.
  2. Пружина кручения. Этот вариант характеризуется небольшими размерами, устанавливаются при изготовлении прищепок.
  3. Сжатие и растяжение. Этот тип пружины весьма распространен, при приложении требуемого усилия происходит изменение линейных размеров. Сегодня он встречается в самых различных механизмах. Сжатие и растяжение применяется при создании промышленного и бытового оборудования.

Приведенная выше информация указывает на то, что есть просто огромное количество различных видов пружин, которые применяются в качестве основных элементов различных механизмов.

Виды пружин

Наиболее распространенными являются 4 категории автомобильных пружин. Именно они чаще всего устанавливаются на транспортные средства. При этом изделия несколько отличаются друг от друга, обладая определенными характеристиками и преимуществами.

Выделяют 4 категории автопружин:

Стандартные. Это базовый или штатный вариант, который в основном монтируется на легковые автомобили с завода. Подходит большинство современных моделей, адаптированных с обычным условиям эксплуатации;
Усиленные. Помогают повысить эксплуатационные характеристики транспортного средства

Актуальное решение для тех, кому важно получить на задних и передних элементах подвески дополнительную прочность и устойчивость для прохождения бездорожья, перевозки тяжелого прицепа или груза в самой машине;
Повышающие. Или же завышающие

Их установка дает возможность поднять клиренс, то есть дорожный просвет, а также улучшить показатели грузоподъемности;
Опускающие. Их еще называют занижающими. Вариант для поклонников спортивной езды. Служат для специального уменьшения дорожного просвета и смещения центра тяжести авто.

Все категории пружин востребованные и распространены в продаже и эксплуатации. Какие именно подходят вам, исходите из условий эксплуатации и задач, которые вы ставите перед своей машиной.

Шарико-винтовая передача — принцип работы, назначение Сферы применения разных типов пружин. основные разновидности пружин кручения Встречаются различные виды пружин, классификация проводится по различным признакам Неподходящие пружины не обеспечивают требуемую функциональность Классы жесткости пружин ваз — автотоп Основные параметры пружин подвесок российских легковых автомобилей (данные производителей) Шарико-винтовые передачи для станков Lesjöfors automotive - типы пружин Типы пружин Виды и типы пружин конические, составные, призматические | строитель промышленник Винтовые цилиндрические пружины сжатия и растяжения | справочник для конструкторов, инженеров, технологов

Замена пружин может понадобиться практически на любом автомобиле. Это скорее вопрос их износа. Если условия эксплуатации менять не собираетесь, стандартные изделия приходят на смену точно таким же.

Процедура замены пружин проводится на разных авто, включая:

  • Фольксваген Гольф;
  • Шевроле Ланос;
  • Рено Трафик;
  • Пежо 308;
  • БМВ Х5;
  • Шкода Октавия;
  • ВАЗ 2110;
  • автомобили VAG;
  • Audi A8;
  • Ауди 100;
  • Тойота Авенсис;
  • Мерседес МЛ;
  • Лада Приора и пр.

Марка и модель здесь не играет принципиальной разницы, поскольку пружины могут выйти из строя у любого авто.

А вот при покупке новых изделий обязательно учитывается конкретная марка, модель, поколение и ряд дополнительных параметров. Это позволяет максимально точно выбрать соответствующие автомобилю запчасти.

Важное

Класс А, также как и класс В, имеют абсолютно равнозначное право на существование. Маркировка по цветам была введена для того, чтобы исключить разницу в их высоте на противоположных бортах автомобиля. Ведь установка пружин разной высоты с двух сторон одной оси автомобиля приведет к ухудшению его управляемости и устойчивости, а также приведет к скорому выходу из строя деталей ходовой части.

Специалисты рекомендуют использовать пружины только одного класса. Допускается в передней подвеске применять класс А, а в задней — класс В. Если же в передней подвеске использованы пружины класса В, то установка в задней подвеске класса А запрещается категорически. В любом случае на одной оси в обязательном порядке должны быть установлены пружины как одного вида, так и одного класса.

Призматическая пружина

Примеры применении пружин рас – Ус i японка пружин ежа гни с ревер-тижсния сораын д. я восприятия растягивающих сил.

Призматические пружины отличаются неустойчивостью, легко искривляются и скручиваются под нагрузкой. По этой причине их устанавливают всегда в жестких внутренних или наружных направляющих, по форме соответствующих форме пружины в плане.

К определению внутренних силовых факторов в поперечном сечении витка призматической пружины.

Призматические пружины во избежание искажения их формы в процессе деформации необходимо монтировать в направляющих-стаканах или на оправках.

Призматические пружины следует использовать только в случае острой необходимости, обусловленной габаритными и другими конструктивными соображениями. Призматические пружины при несимметричном очертании витков необходимо монтировать, во избежание искривления, в направляющих стаканах или на оправках.

Ось витков призматических пружин чаще всего располагается на призме, имеющей в плане вид прямоугольника со скругленными углами.

К определению внутренних силовых факторов в поперечном сечении витка призматической пружины.

Рассмотрим расчет призматических пружин сжатия на прочность и жесткость.

При несимметричном очертании витков призматические пружины необходимо монтировать в направляющих стаканах или на оправках во избежание искривления.

Рассмотрим потенциальную энергию деформации нагруженной призматической пружины с прямолинейной осью и плоскими витками прямоугольной формы. Введем следующие обозначения: ось / – главная центральная ось поперечного сечения проволоки, лежащая в плоскости витка; ось 2 – главная центральная ось поперечного сечения проволоки, перпендикулярная к плоскости витка, и ось 3 – касательная к оси проволоки.

Для дальнейших преобразований уравнения ( 97) необходимо получить зависимость между осадкой А и нагрузкой Р, действующей на призматическую пружину .

В главе XII рассматриваются точные и приближенные методы исследования устойчивости сжатых стержней постоянного и переменного сечения, а также устойчивость цилиндрических и призматических пружин сжатия .

В пружинах с витками некруглой формы материал находится в значительно более тяжелых условиях работы, чем в винтовых цилиндрических пружинах; поэтому призматические пружины следует использовать только в случае острой необходимости, обусловленной габаритными и другими конструктивными соображениями. Призматические пружины при несимметричном очертании витка во избежание искривления всегда необходимо монтировать в направляющих стаканах или на оправках.

В пружинах с витками некруглой формы материал находится в значительно более тяжелых условиях работы, чем в винтовых цилиндрических пружинах; поэтому призматические пружины следует использовать только в случае острой необходимости, обусловленной габаритными и другими конструктивными соображениями. Призматические пружины при несимметричном очертании витка во избежание искривления всегда необходимо монтировать в направляющих стаканах или на оправках.

Призматические пружины следует использовать только в случае острой необходимости, обусловленной габаритными и другими конструктивными соображениями. Призматические пружины при несимметричном очертании витков необходимо монтировать, во избежание искривления, в направляющих стаканах или на оправках.

Особенности производственного процесса

Основой деталей служит стальная пружинная проволока, процесс производства которой достаточно трудоемкий. На волочильных станках протягивается основа, периодически подвергаемая термической обработке и травлению для создания требуемого сечения. Поверхность проволоки должна быть особенно качественной, поскольку при набивке на ней не должны появляться вмятины, сколы и прочие дефекты, которые в дальнейшем могут стать причиной ненадежности и быстрого выхода из строя механизмов.

Важным производственным этапом является закалка, требующая точного следования технологическому процессу, зависящему от используемой марки стали.

При изготовлении пружин из проволоки с незначительным сечением, их можно не подвергать термической обработке, используя готовую основу. Однако силовые детали, испытывающие серьезные нагрузки, должны производиться из отожженной стали, дополнительно закаляемой после формовки.

Самым опасным видом закаливания считается закалка в воде, в процессе которой происходит значительное охлаждение материала. Поскольку используемые в производстве пружин стали имеют минимальную теплопроводность, слишком быстрое охлаждение может стать причиной появления закалочных трещин – следствия влияния чрезмерных внутренних напряжений. Данный метод закалки используется редко, при этом в воду добавляются разнообразные примеси, замедляющие процесс охлаждения. Наиболее качественными получаются элементы, закаляемые на воздухе или в масле, закалочных средах, не вызывающих быстрых и ощутимых перепадов температур в изделиях.

Для навивки применяются специальные автоматы, позволяющие создавать пружины как с правой, так и левой навивкой, при этом все работы производятся автоматические (если только не возникает необходимости отгибать крайние нитки для придания зацеплению нужной формы). С помощью автоматов можно создавать как крупные, так и мелкие пружины, если это необходимо, обрабатывая термически используемый материал.

Конические пружины

Как ранее было отмечено, для существенного повышения устойчивости в последнее время часто применяется пружина конического типа. Она характеризуется нижеприведенными особенностями:

  1. В целом можно назвать, что изделие в целом напоминает цилиндрический вариант исполнения.
  2. Каждый последующий виток имеет диаметр, меньше предыдущего. Именно поэтому подобный вид пружины характеризуется большим диаметром первого витка, так как остальные вкладываются внутрь.
  3. Еще одним важным моментом можно назвать повышенную устойчивость изделия к смещению. Это связано с тем, что витки входят друг в друга, при этом расстояние между ними существенно снижается. Повышенная устойчивость – то, что требуется достаточно часто.
  4. Устанавливается этот вариант исполнения в том случае, когда нужна минимальная длина изделия в сжатом состоянии.

Подобный вид пружины характеризуется сложностью в производстве. Именно поэтому существенно повышается стоимость изделия.

Виды и типы пружин: конические, составные, призматические Пружины приводы характеристики пружин Что означают цветные метки на пружинах: как разобраться с маркировкой Волновой редуктор — принцип работы, устройство, применение, типы Типы пружин Применение пружин кручения в народном хозяйстве и в быту Сферы применения разных типов пружин. основные разновидности пружин кручения

Технология изготовления пружин и требования к ним

Технология изготовления пружин играет важную роль и имеет большое значение для их беспроблемной долгосрочной эксплуатации. Упругие элементы – это высокотехнологичные изделия, требующие наличия квалификации и опыта от инженеров-конструкторов и технологов, а также хорошего парка оборудования на предприятии-производителе. От того, насколько правильными были расчеты пружины, подбор материала с учетом требуемых характеристик и особенностей ее применения, а также используемые технологии и точность изготовления, зависит работа целого агрегата, где эта деталь будет комплектующей.

Теория

С точки зрения классической физики, пружину можно рассматривать как устройство, накапливающее потенциальную энергию путём изменения расстояния между атомами эластичного материала.

В теории упругости законом Гука установлено, что растяжение эластичного стержня пропорционально приложенной к нему силе, направленной вдоль его оси. В реальности этот закон выполняется не точно, а только при малых растяжениях и сжатиях. Если напряжение превышает определённый предел (предел текучести) в материале наступают необратимые нарушения его структуры, и деталь разрушается или получает необратимую деформацию. Следует отметить, что многие реальные материалы не имеют чётко обозначенного предела текучести, и закон Гука к ним неприменим. В таком случае, для материала устанавливается условный предел текучести.

Витые металлические пружины преобразуют деформацию сжатия/растяжения пружины в деформацию кручения материала из которого она изготовлена, и наоборот, деформацию кручения пружины в деформацию растяжения и изгиба металла, многократно усиливая коэффициент упругости за счёт увеличения длины проволоки противостоящей внешнему воздействию. Волновые пружины сжатия подобны множеству последовательно/параллельно соединённых рессор, работающих на изгиб.

Цветовая маркировка пружин «Спорт»

Со спортивными пружинами цвет не имеет значения и является выбором компании. Зеленые, синие, красные или желтые пружины не указывают на степень их жесткости. Таким образом, разные цвета пружин являются характерной чертой производителя. Они используются для облегчения распознавания бренда, и это не имеет ничего общего с масштабом или характеристиками их работы.

Жесткость пружины определяется цветовой шкалой, размещенной только на витках пружины, или точками, пробитыми на них (…) или выемками (IIIII). Вы также можете найти окрашенные пятна (оооо). Их число означает твердость пружины. Согласно стандартам, жесткость пружины должна быть именно выбита на пружине, а не окрашено, запомните это.

Цветовая маркировка пружин

На одной оси разрешается ставить пружины только одной жесткости и только одного производителя, иначе поведение автомобиля на поворотах может оказаться неожиданным.

Очень часто на автомобиль устанавливают все 4 пружины одинаковой жесткости, но это не верно. Устанавливать нужно только рекомендуемые производителем автомобиля пружины, оригинальные или их аналоги, соблюдая жесткость пружины на передней и задней оси.

Пружины сжатия: особенности, преимущества и разновидности деталей

С точки зрения классической физики, пружину можно рассматривать как устройство, накапливающее потенциальную энергию путём изменения расстояния между атомами эластичного материала.

В теории упругости законом Гука установлено, что растяжение эластичного стержня пропорционально приложенной к нему силе, направленной вдоль его оси. В реальности этот закон выполняется не точно, а только при малых растяжениях и сжатиях. Если напряжение превышает определённый предел (предел текучести) в материале наступают необратимые нарушения его структуры, и деталь разрушается или получает необратимую деформацию. Следует отметить, что многие реальные материалы не имеют чётко обозначенного предела текучести, и закон Гука к ним неприменим. В таком случае, для материала устанавливается условный предел текучести.

Витые металлические пружины преобразуют деформацию сжатия/растяжения пружины в деформацию кручения материала из которого она изготовлена, и наоборот, деформацию кручения пружины в деформацию растяжения и изгиба металла, многократно усиливая коэффициент упругости за счёт увеличения длины проволоки противостоящей внешнему воздействию. Волновые пружины сжатия подобны множеству последовательно/параллельно соединённых рессор, работающих на изгиб.

Коэффициент жёсткости [ править | править код ]

Витая цилиндрическая пружина сжатия или растяжения, намотанная из цилиндрической проволоки и упруго деформируемая вдоль оси, имеет коэффициент жёсткости

k = G ⋅ d D 4 8 ⋅ d F 3 ⋅ n , >^> ^cdot n>>,>

Читайте также: Отжиг, закалка и термическая обработка бронзы

D — диаметр проволоки;
d
F — диаметр намотки (измеряемый от оси проволоки);
n
— число витков;
G
— модуль сдвига (для обычной стали
G
≈ 80 ГПа, для меди

Исследовательская часть

Первым примером, я исследовал первый закон Ньютона. Этот пример эффектно демонстрирует действие закона инерции — первого закона Ньютона.

Дальше я продемонстрирую, как я его исполнял. В горизонтальную подставку я вставил кусок тонкой стальной полоски, выполняющий роль пружины. Рядом на подставке установил короткую стальную трубку, на ней прямоугольный кусок картона (он должен лежать строго горизонтально) и стальной шарик диаметром немного меньше отверстия трубки. Шарик положил на картон так, что его центр лежит над отверстием. Отогнул пальцем пружину и отпустил.

Возвращаясь в исходное положение, стальная полоска ударяет по ребру картона, та улетает, а шарик падает внутрь трубки. Объясняется пример довольно просто. Сила трения качения стали по картону очень мала, и ее не хватает на то, чтобы сдвинуть с места тяжелый стальной шарик. По закону инерции шарик, находящийся в состоянии равновесия, стремится сохранить состояние покоя, и это ему прекрасно удается.

Пример первого закона Ньютона

Вторым примером, я исследовал третий закон Ньютона.Я взял две одинаковые книги. Обвязал их бечевкой каждую из двух книг, равных по весу, и соединил две бечевки несколькими резинками, сложенными вместе. Дальше я положил книги на гладкую поверхность и раздвинул их так, чтобы резинки были натянуты, и положил карандаш точно посредине.

Потом я одновременно отпустил обе книги, и каждая из них притянулась резинкой к карандашу на одинаковое расстояние.

Этот пример подтверждает закон о том, что действие и противодействие равны. Если одна книга тяжелее другой, то более тяжелая книга сдвинется на меньшее расстояние, но количества движения, сообщенные обеим книгам, от этого не изменятся. Они одинаковы.

Пример третьего закона Ньютона

Третьем примером, я исследовал пружины в игрушках. Я разобрался в этом, ознакомившись с устройством некоторых из них. Внутри этих игрушек – пружина. Сжатая пружина обладает потенциальной энергией, за счет которой тело может совершать работу. Дальше я поставил опыт. Я поместил пружину на металлический стержень от штатива. Сжал ее и связал ниткой. Поджег нитку, пружина взлетела высоко вверх. Пружина приобрела скорость, так как ее потенциальная энергия перешла в кинетическую.

Также примером послужило, когда я завел игрушку, поворачивая ключ, пружина внутри игрушки сжалась, увеличилась ее потенциальная энергия. Чем больше оборотов ключа я сделаю, тем сильнее сожмется пружина, тем больший запас потенциальной энергии получит пружина. Потом игрушку я отпустил. Пружина внутри игрушки начала раскручиваться, тем самым, потенциальная энергия пружины превращается в кинетическую энергию игрушки. В основе работы этих игрушек лежит закон сохранения механической энергии.

Дома я нашел пружинные пистолеты с пулями-присосками. Когда я вставил пулю в пистолет, сжалась пружина, находящаяся внутри. Деформированная пружина обладает запасом потенциальной энергии, за счет которой при спуске курка начинается движение пули. В соответствии с законом сохранения механической энергии потенциальная энергия пружины превращается в кинетическую энергию пули-присоски.

Можно объяснить и следующее за выстрелом явление присасывания пули к поверхности. Это явление можно объяснить существованием атмосферного давления. Когда присоска ударяется о поверхность, некоторая часть воздуха выбрасывается из-под присоски из-за этого удара. В результате силы атмосферного давления прижимают пулю-присоску к поверхности, т.к. атмосферное давление больше, чем давление под присоской.

Заключение

При выполнении этой исследовательской работы о физике пружины я узнал много нового, заинтересовался изучением физики и лучше стал в ней разбираться. Эта работа доступна людям всех возрастов, ведь для объяснения работы,которые я предоставил достаточно знаний школьного курса физики.

Читайте также: Термическая обработка цветных сплавов

С точки зрения классической физики, пружину можно рассматривать как устройство, накапливающее потенциальную энергию путём изменения расстояния между атомами эластичного материала. В теории упругости законом Гука установлено, что растяжение эластичного стержня пропорционально приложенной к нему силе, направленной вдоль его оси. В реальности этот закон выполняется не точно, а только при малых растяжениях и сжатиях. Если напряжение превышает определённый предел (предел текучести) в материале наступают необратимые нарушения его структуры, и деталь разрушается или получает необратимую деформацию.

В рамках своего исследовательского проекта о физике пружины я убедился, что по закону инерции шарик, находящийся в состоянии равновесия, стремится сохранить состояние покоя. Также во-втором примере, мне стало четко ясно, что действие и противодействие равны. При выполнении примера 3 и последующих, я стал лучше разбираться конструкциях игрушек и применение в них пружин.

На этом я не собираюсь останавливаться и планирую продолжить свою работу в следующем проекте по физике, ведь впереди еще так много интересного.

Список использованных источников

  1. А.В. Перышкина – Законы ньютона;
  2. Е. Н. Соколова «Юному физику» – движение по инерции;
  3. Елена Тян — Закон Гука. Пионерские истории;
  4. И. Я. Ланина «Внеклассная работа по физике» — деление игрушек по группам;
  5. Савельев И.В. Курс общей физики — закон сохранения энергии;
  6. Сасскинд Л., Грабовски Д — теоретический минимум;
  7. Игрушки, действие которых основано на Архимедовой силе.
  8. История пружин (по материалам википедии).
  9. Инерция. Первый закон Ньютона.
  10. Виды пружин.

Если страница Вам понравилась, поделитесь в социальных сетях:

Виды пружин [ править | править код ]

По виду воспринимаемой нагрузки

  • пружины сжатия;
  • пружины растяжения;
  • пружины кручения;
  • пружины изгиба.

Пружины растяжения

— рассчитаны на увеличение длины под нагрузкой. В ненагруженном состоянии обычно имеют сомкнувшиеся витки. На концах для закрепления пружины на конструкции имеются крючки или кольца.

Пружины сжатия

— рассчитаны на уменьшение длины под нагрузкой. Витки таких пружин без нагрузки не касаются друг друга. Концевые витки поджимают к соседним и торцы пружины шлифуют. Длинные пружины сжатия, во избежание потери устойчивости, ставят на оправки или стаканы, либо используют менее габаритные волновые пружины.

У пружин растяжения-сжатия под действием постоянной по величине силы витки испытывают напряжения двух видов: изгиба и кручения.

Пружина изгиба

— применяется для передачи упругих деформаций при незначительных изменениях геометрических размеров пружины или пакета пружин (рессоры, тарельчатые пружины).Они имеют разнообразную простую форму ( торсионы, стопорные кольца и шайбы, упругие зажимы, элементы реле и т.п.)

Пружины кручения

— могут быть двух видов:

Читайте также: ГЛАВА 13. ВОССТАНОВЛЕНИЕ ДЕТАЛЕЙ СВАРКОЙ И НАПЛАВКОЙ

  • торсионные — стержень, работающий на кручение (имеет большую длину, чем витая пружина)
  • витые пружины, работающие на кручение (как в бельевых прищепках, в мышеловках и в канцелярских дыроколах).

В приборостроении известна пружина Бурдона

— трубчатая пружина в манометрах для измерения давления, играющая роль чувствительного элемента.

Примечания

К:Википедия:Статьи без источников (тип: не указан)

В другом языковом разделе есть более полная статья Ressort (фр.)
Вы можете помочь проекту, расширив текущую статью с помощью перевода.

Материал и технология изготовления [ править | править код ]

Пружина может быть изготовлена из любого материала, имеющего достаточно высокие прочностные и упругие свойства (сталь, пластмасса, дерево, фанера, даже картон).

Материал различных резин имеет упругие свойства не требующие придания ей особой формы и часто применяется в прямом виде, однако из-за менее определённых характеристик в точных машинах используется реже.

Стальные пружины общего назначения изготавливают из высокоуглеродистых сталей (У9А-У12А, 65, 70), легированных марганцем, кремнием, ванадием (65Г, 60С2А, 65С2ВА). Для пружин, работающих в агрессивных средах, применяют нержавеющую сталь (12Х18Н10Т), бериллиевую бронзу (БрБ-2), кремнемарганцевую бронзу (БрКМц3-1), оловянноцинковую бронзу (БрОЦ-4-3), титановые (ВТ-16) и никелевые сплавы (A-286, INCONEL, ELGILOY).

Небольшие пружины можно навивать из готовой проволоки, в то время как мощные изготавливаются из отожжённой стали и закаляются уже после формовки.

Читать также: Подрезной нож для мясорубки

Составные пружины

Пружина составного типа используются в случае больших нагрузок. Среди особенностей отметим:

  1. В большинстве случаев изделие работает на сжатие. При этом все элементы имеют одинаковую длину.
  2. Составной вариант исполнения представлен сочетанием нескольких, которые имеют различный диаметр витков и вставляются друг в друга. При этом все они имеют общую ось, за счет чего обеспечивается равномерное распределение нагрузки.
  3. Для снижения вероятности перескоков витков, из-за чего не происходит сжатие, их выполняют в противоположном направлении закручивания.

Подобный вариант исполнения получил весьма широкое распространение, устанавливается на автомобилях и другом оборудовании. Не стоит забывать о том, что за счет увеличения количества пружин существенно повышается стоимость изделия.

Применение пружин [ править | править код ]

Пружина — один из самых широко применяемых элементов механизмов, конструкций, приборов. Используется для компенсации размерных неточностей, износа, снятия вибраций, как накопитель энергии, для простого измерения давления, веса, усилий и ускорений; предохранения от ударов и перегрузок.

В канцелярских товарах [ править | править код ]

  • скрепки и канцелярские прищепки
  • авторучки и механические карандаши
  • степлеры и дыроколы

В строительстве [ править | править код ]

  • Простейшие доводчикибез гасителей для калиток и дверей интенсивного пользования, в холодном климате для тамбуров.
  • В возвратных механизмах ручных жалюзи, роликовых ставен и тяжелых секционных ворот.
  • В клапанах направления движения в общественных местах.
  • В лифтовых буферах.
  • В строениях и конструкциях на неустойчивых грунтах, в геологически активных местностях, как гаситель сейсмических волн.

В пресс-формах и штампах [ править | править код ]

В пресс-формах и штампах применяются пружины сжатия с прямоугольным сечением проволоки, они называются инструментальными пружинами. Благодаря прямоугольному сечению проволоки, пружина имеет более жесткие пружинные свойства при относительно небольших размерах, что очень удобно для размещения их в пресс-формы и штампы.

В огнестрельном оружии [ править | править код ]

  • Боевая пружина, возвратная пружина, пружина магазина
  • В симуляции оружия, оружие для страйкбола — пружина обычно используется для выталкивания снаряда в пружинно-поршневых винтовках.

В механизмах постоянной силы [ править | править код ]

Конструкция механизма или самой пружины обеспечивает постоянное усилие на грузонесущем элементе в определенном диапазоне перемещения.

  • Опоры постоянного усилия для трубопроводов
  • Роликовые пружины постоянного усилия или момента
  • Уплотнения трубопроводной арматуры
  • Заданная нагрузка для плавающих подшипников

Пружины – упругие элементы конструкций, служащие для накопления или рассеяния механической энергии. Они окружают нас со всех сторон — под клавишами клавиатуры компьютера, в подвеске автомобиля и в подъемном механизме дивана. Наиболее распространены витые пружины сжатия. Существует несколько способов сделать их.

Где применяются торсионные пружины

Торсионы широко распространены в различных областях:

  • Автомобилестроение (усиленные пружины часто устанавливают на подвесках внедорожников).
  • Производство секционных ворот (подъемный механизм, балансирующий конструкцию и облегчающей ее открывание).
  • Изготовление измерительных приборов и маятников.
  • Изготовление многопоточных редукторов (выравнивают моменты между параллельными передачами).

Многообразие сфер применения торсионов обусловлено их долговечностью и конструктивными особенностями. А чтобы они служили надежно на протяжении всего срока эксплуатации, необходимо правильно рассчитать жесткость пружины, подобрать оптимальную длину и диаметр. Имеет значение и материал изготовления, и антикоррозионное покрытие, и то, где и по какой технологии они произведены.

Витые пружины сжатия

Упругие элементы могут иметь различные пространственные формы. Исторически первыми пружинами освоенными человеком, были листовые. Их и сегодня можно видеть — это рессоры у большегрузных грузовиков. С развитием технологий люди научились изготавливать более компактные витые пружины, работающие на сжатие. Кроме них, используются и пространственные упругие элементы.

Особенности конструкции

Такие пружины при работе принимают нагрузку вдоль своей оси. В начальном положении между их витками существуют просветы. Приложенная внешняя сила деформирует пружину, длина ее уменьшается до тех пор, пока витки не соприкоснуться. С этого момента пружина представляет собой абсолютно жесткое тело. По мере уменьшения внешнего усилия форма изделия начинается возвращаться к первоначальной вплоть до полного восстановления при исчезновении нагрузки.

Основными характеристиками, описывающими геометрию детали, считают:

  • Диаметр прутка, из которого навита пружина.
  • Число витков.
  • Навивочный шаг.
  • Внешний диаметр детали.

Внешняя форма может отличаться от цилиндрической и представлять собой одну из фигур вращения: конус, бочку (эллипсоид) и другие

Шаг навивки бывает постоянный и переменный. Направление навивки – по часовой стрелке и против нее.

Сечение витков бывает круглым, плоским, квадратным и др.

Читайте также: Легированная сталь 20Х13: характеристики, применение, аналоги

Концы витков стачиваются до плоской формы.

Область эксплуатации

Шире других используются цилиндрические винтовые пружины постоянного внешнего диаметра и постоянного шага. Они применяются в таких областях, как

  • Машиностроение.
  • Приборостроение.
  • Транспортные средства.
  • Добыча полезных ископаемых промышленность.
  • Бытовая техника .

и в других отраслях.

Применение пружины в быту

Отрывок, характеризующий Пружина

– Ma bonne amie, [Мой добрый друг,] – сказала маленькая княгиня утром 19 го марта после завтрака, и губка ее с усиками поднялась по старой привычке; но как и во всех не только улыбках, но звуках речей, даже походках в этом доме со дня получения страшного известия была печаль, то и теперь улыбка маленькой княгини, поддавшейся общему настроению, хотя и не знавшей его причины, – была такая, что она еще более напоминала об общей печали. – Ma bonne amie, je crains que le fruschtique (comme dit Фока – повар) de ce matin ne m’aie pas fait du mal. [Дружочек, боюсь, чтоб от нынешнего фриштика (как называет его повар Фока) мне не было дурно.] – А что с тобой, моя душа? Ты бледна. Ах, ты очень бледна, – испуганно сказала княжна Марья, своими тяжелыми, мягкими шагами подбегая к невестке. – Ваше сиятельство, не послать ли за Марьей Богдановной? – сказала одна из бывших тут горничных. (Марья Богдановна была акушерка из уездного города, жившая в Лысых Горах уже другую неделю.) – И в самом деле, – подхватила княжна Марья, – может быть, точно. Я пойду. Courage, mon ange! [Не бойся, мой ангел.] Она поцеловала Лизу и хотела выйти из комнаты. – Ах, нет, нет! – И кроме бледности, на лице маленькой княгини выразился детский страх неотвратимого физического страдания. – Non, c’est l’estomac… dites que c’est l’estomac, dites, Marie, dites…, [Нет это желудок… скажи, Маша, что это желудок…] – и княгиня заплакала детски страдальчески, капризно и даже несколько притворно, ломая свои маленькие ручки. Княжна выбежала из комнаты за Марьей Богдановной. – Mon Dieu! Mon Dieu! [Боже мой! Боже мой!] Oh! – слышала она сзади себя. Потирая полные, небольшие, белые руки, ей навстречу, с значительно спокойным лицом, уже шла акушерка. – Марья Богдановна! Кажется началось, – сказала княжна Марья, испуганно раскрытыми глазами глядя на бабушку. – Ну и слава Богу, княжна, – не прибавляя шага, сказала Марья Богдановна. – Вам девицам про это знать не следует. – Но как же из Москвы доктор еще не приехал? – сказала княжна. (По желанию Лизы и князя Андрея к сроку было послано в Москву за акушером, и его ждали каждую минуту.) – Ничего, княжна, не беспокойтесь, – сказала Марья Богдановна, – и без доктора всё хорошо будет. Через пять минут княжна из своей комнаты услыхала, что несут что то тяжелое. Она выглянула – официанты несли для чего то в спальню кожаный диван, стоявший в кабинете князя Андрея. На лицах несших людей было что то торжественное и тихое. Княжна Марья сидела одна в своей комнате, прислушиваясь к звукам дома, изредка отворяя дверь, когда проходили мимо, и приглядываясь к тому, что происходило в коридоре. Несколько женщин тихими шагами проходили туда и оттуда, оглядывались на княжну и отворачивались от нее. Она не смела спрашивать, затворяла дверь, возвращалась к себе, и то садилась в свое кресло, то бралась за молитвенник, то становилась на колена пред киотом. К несчастию и удивлению своему, она чувствовала, что молитва не утишала ее волнения. Вдруг дверь ее комнаты тихо отворилась и на пороге ее показалась повязанная платком ее старая няня Прасковья Савишна, почти никогда, вследствие запрещения князя,не входившая к ней в комнату. – С тобой, Машенька, пришла посидеть, – сказала няня, – да вот княжовы свечи венчальные перед угодником зажечь принесла, мой ангел, – сказала она вздохнув. – Ах как я рада, няня. – Бог милостив, голубка. – Няня зажгла перед киотом обвитые золотом свечи и с чулком села у двери. Княжна Марья взяла книгу и стала читать. Только когда слышались шаги или голоса, княжна испуганно, вопросительно, а няня успокоительно смотрели друг на друга. Во всех концах дома было разлито и владело всеми то же чувство, которое испытывала княжна Марья, сидя в своей комнате. По поверью, что чем меньше людей знает о страданиях родильницы, тем меньше она страдает, все старались притвориться незнающими; никто не говорил об этом, но во всех людях, кроме обычной степенности и почтительности хороших манер, царствовавших в доме князя, видна была одна какая то общая забота, смягченность сердца и сознание чего то великого, непостижимого, совершающегося в эту минуту. В большой девичьей не слышно было смеха. В официантской все люди сидели и молчали, на готове чего то. На дворне жгли лучины и свечи и не спали. Старый князь, ступая на пятку, ходил по кабинету и послал Тихона к Марье Богдановне спросить: что? – Только скажи: князь приказал спросить что? и приди скажи, что она скажет. – Доложи князю, что роды начались, – сказала Марья Богдановна, значительно посмотрев на посланного. Тихон пошел и доложил князю. – Хорошо, – сказал князь, затворяя за собою дверь, и Тихон не слыхал более ни малейшего звука в кабинете. Немного погодя, Тихон вошел в кабинет, как будто для того, чтобы поправить свечи. Увидав, что князь лежал на диване, Тихон посмотрел на князя, на его расстроенное лицо, покачал головой, молча приблизился к нему и, поцеловав его в плечо, вышел, не поправив свечей и не сказав, зачем он приходил. Таинство торжественнейшее в мире продолжало совершаться. Прошел вечер, наступила ночь. И чувство ожидания и смягчения сердечного перед непостижимым не падало, а возвышалось. Никто не спал. Была одна из тех мартовских ночей, когда зима как будто хочет взять свое и высыпает с отчаянной злобой свои последние снега и бураны. Навстречу немца доктора из Москвы, которого ждали каждую минуту и за которым была выслана подстава на большую дорогу, к повороту на проселок, были высланы верховые с фонарями, чтобы проводить его по ухабам и зажорам. Княжна Марья уже давно оставила книгу: она сидела молча, устремив лучистые глаза на сморщенное, до малейших подробностей знакомое, лицо няни: на прядку седых волос, выбившуюся из под платка, на висящий мешочек кожи под подбородком. Няня Савишна, с чулком в руках, тихим голосом рассказывала, сама не слыша и не понимая своих слов, сотни раз рассказанное о том, как покойница княгиня в Кишиневе рожала княжну Марью, с крестьянской бабой молдаванкой, вместо бабушки. – Бог помилует, никогда дохтура не нужны, – говорила она. Вдруг порыв ветра налег на одну из выставленных рам комнаты (по воле князя всегда с жаворонками выставлялось по одной раме в каждой комнате) и, отбив плохо задвинутую задвижку, затрепал штофной гардиной, и пахнув холодом, снегом, задул свечу. Княжна Марья вздрогнула; няня, положив чулок, подошла к окну и высунувшись стала ловить откинутую раму. Холодный ветер трепал концами ее платка и седыми, выбившимися прядями волос.

Требования к пружинам

Для эффективного функционирования работы требуются следующие свойства:

  • высокая прочность;
  • пластичность;
  • упругость;
  • износостойкость.

Чтобы обеспечить проектные значения этих параметров, требуется правильно выбрать материал, точно рассчитать размеры, разработать и соблюсти технологию изготовления.

Государственными стандартами определяются требования к изготовлению пружин. По допустимым отклонениям они относятся к одной из точностных групп:

Схематическое изображение пружины

Строгие требования предъявляются к точности соблюдения геометрии, чистоте поверхности.

Не соответствуют стандарту изделия с царапинами и прочими наружными дефектами, снижающими ресурс изделия и срок его эксплуатации

Советы по выбору матраса

Чтобы выбрать матрас с независимым пружинным блоком и не ошибиться, рекомендуется не торопиться с покупкой. Отзывы покупателей не всегда могут отражать реальную картину. Известно, что мнения относительно параметров изделия не всегда могут совпадать.

Рекомендуется проконсультироваться с менеджером магазина, лично проверить изделие на жесткость. Если продавцы позволят полежать на матрасе, стоит воспользоваться предложением и лично убедиться, насколько матрас комфортен конкретно для вас.

Только убедившись, что это матрас, на котором вам хотелось бы спать, можно оформлять покупку.

Требования к материалу

Прочностные параметры и отказоустойчивость изделия во многом определяются материалом, из которого его решили сделать. Металлурги выделяют в классификации сталей специальные рессорно-пружинные стали. Они обладают специфической кристаллической структурой, определяемой как химическим составом, так и проводимой термической обработкой изделий. Высоколегированные сплавы повышенной чистоты и высокого металлургического качества обеспечивают высокую упругость и пластичность, способны сохранять свои физико-механические свойства после многократных деформаций.

Популярность среди конструкторов механизмов приобрели пружинные сплавы 60С2А, 50ХФА и нержавейка 12Х18Н10Т

Классификация блоков и их отличия

В зависимости от количества пружин, их формы и количества на 1 м2, различают несколько видов блоков. От их характеристики зависит, насколько комфортно себя будет чувствовать лежащий на матрасе человек.

Pocket Spring или TFK

Один из самых востребованных независимых пружинных блоков. Отличается хорошими ортопедическими характеристиками, обеспечивает оптимальную поддержку позвоночника.

  • диаметр — около 6 см;
  • бочонкообразная форма;
  • шесть витков;
  • 220–300 шт/м2.

Multipocket

Блок с отличными анатомическими и ортопедическими свойствами. Характеризуется высокой упругостью и способностью поддерживать тело в его естественном положении.

  • диаметр не более 4-х см;
  • цилиндрическая форма;
  • количество витков —10–12;
  • 500–1000 шт/м2, в зависимости от модели.

Micropocket

Упругий блок, рассчитанный на очень высокие нагрузки. Рекомендован не только покупателям с большим весом, но и тем, кто предпочитает жесткие поверхности для сна.

  • диаметр — около 2,5 см;
  • толщина проволоки — около 1мм;
  • количество витков 12–14;
  • форма пружины цилиндрическая;
  • 500–1000 шт/м2.

Блок маловостребован из-за высокой цены.

Hour Glass

Пружинный блок отличается умеренной упругостью, отличными ортопедическими и анатомическими свойствами, которые получены благодаря оригинальной форме спиралей.

  • диаметр — около 6 см;
  • количество витков 7,5;
  • форма пружин — «песочные часы»;
  • не более 300 шт/м2.

Dual Spring

Пружинный блок с двойными пружинами. Название буквально переводится как «пружина в пружине». Идеально подходит для людей в большой разницей в весе, так как внешние спирали рассчитаны на 100кг нагрузки, а внутренние — на 150 кг.

  • 256 шт/м2, внутренних — 128;
  • диаметр — около 6 см;
  • форма цилиндрическая.

Copper Coil

Блок — усовершенствованный аналог TFK. Отличается расположением пружин, что позволяет увеличить их количество до 300 шт. на 1 м2. Эта характеристика позволяет увеличить жесткость матраса.

Усиленные

Особая категория моделей, рассчитанных на нагрузки до 200 кг. В них для пружин используется более упругая проволока, увеличивается количество витков и число спиралей на 1 м2.

С зонами жесткости

Специальные модели, имеющие в составе пружины с различными характеристиками. Они распределяются в блоке зонально, что позволяет добиться разной поддержки тела, в зависимости от оказываемого давления на отдельном участке. Такая поддержка позволяет полностью расслабиться и сохранить правильное положение тела во время сна.

Особенности технологии

Технологический процесс изготовления упругих элементов зависит от технических требований, предъявляемых к конструкции. Сделать пружину не так просто, как обычную деталь, которая не должна обладать особыми упругими свойствами. Для этого требуется специальное оборудование и оснастка.

Навивка пружин с круглым сечением витка проводится следующими методами:

  • Холодная. Применяется для малых и средних размеров (диаметр проволоки до 8 миллиметров).
  • Горячая. Для больших диаметров.

Технология навивки пружины

После навивки упругие элементы подвергают различным видам термообработки. В ее ходе изделие приобретает заданные свойства.

Читайте также: Литье в кокиль типы и технология производства

Функции пружин

Все упругие компоненты, к которым приклады­вается нагрузка, являются пружинными элементами. Однако, пружины, в более узком смысле, означают только те упругие элементы, которые могут поглощать, сохранять и выпускать работу на относительно большое расстояние. Сохраненная энергия может также использоваться, для того чтобы поддерживать силу. Самые важные области применения промышленных пружин:

  • Поглощение и демпфирование амортиза­торов;
  • Хранение потенциальной энергии (пру­жинные двигатели);
  • Применение силы (пружины сцепления);
  • Вибрирующие системы (вибрационный стел);
  • Измерение силы (пружинные весы).

Технология холодной навивки без закалки

Сначала необходимо сделать подготовительные операции. Перед тем, как из проволоки навивать заготовку, ее подвергают процедуре патентирования. Она заключается в нагреве материала до температуры пластичности. Такая операция готовит проволоку к предстоящему изменению формы.

Читать также: Разборка литий ионного аккумулятора

В ходе операции навивки должны быть выдержаны следующие параметры:

  • Внешний диаметр изделия (для некоторых деталей нормируется внутренний диаметр).
  • Число витков.
  • Шаг навивки.
  • Общая длина детали с учетом последующих операций.
  • Соблюдение геометрии концевых витков.

Холодная навивка без отпуска

Далее проводится стачивание концевых витков до плоского состояния. Это необходимо сделать для обеспечения качественного упора в другие детали конструкции, предотвращения их разрушения и выскальзывания пружины.

Следующий этап технологического процесса — термообработка. Холодная навивка пружин предусматривает только отпуск при низких температурах. Он позволяет усилить упругость и снять механические напряжения, возникшие в ходе навивки.

Исключительно важно точно соблюдать проектный график термообработки, тщательно контролируя температуру и время выдержки.

После термообработки необходимо сделать испытательные и контрольные операции.

Далее по необходимости могут наноситься защитные покрытия, предотвращающие коррозию. Если они наносились гальваническим методом, изделия подвергаются повторному нагреву для снижения содержания водорода в приповерхностном слое.

Центрирование пружин

На момент производства изделия проводится процедура центрирования. Она возможна только при применении специального оборудования. Среди особенностей отметим:

  1. Практически все разновидности виды пружин имеют центральную ось, которая во многом определяет эксплуатационные характеристики детали.
  2. При смещении центра есть вероятность передачи усилия под неправильным углом.
  3. При длительной эксплуатации есть вероятность смещения расположения оси. Обслуживание некоторых механизмов предусматривает ее возвращение в прежнее положение.

Провести процедуру центрирования без специального устройства практически невозможно. Это связано с тем, что применяемая проволока после принятия своего положения сохраняет ее на протяжении всего последующего периода.

Технология холодной навивки с закалкой и отпуском

Первые этапы технологии совпадают с предыдущим процессом. На стадии термообработки начинаются изменения. Она проводится в несколько этапов:

  • Закалка. Заготовку нагревают до заданной температуры, выдерживают от 2 до 3 часов. Далее подвергают скоростному охлаждению, погружая в емкость с минеральным маслом или солевым раствором. В ходе стадии закалки заготовки должны находиться в горизонтальном положении. Это позволит избежать из деформации
  • Отпуск. Заготовку нагревают до 200-300° и выдерживают несколько часов для снятия внутренних напряжений и улучшения упругих свойств.

Далее также проводятся измерительные и контрольные операции. Прошедшие контроль заготовки направляют на пескоструйную обработку для снятия окалины. При необходимости следует сделать также и дробеструйную обработку для повышения прочности поверхностного слоя металла.

Завершает процесс нанесение защитного покрытия.

Устойчивость пружин

Рассматриваемое изделие характеризуется довольно большим количество особенностей. Довольно распространена характеристика, связанная с непосредственной устойчивостью пружины при установке. Среди особенностей этого показателя отметим следующие моменты:

На момент проектирования механизма уделяется внимание устойчивости, которая рассматривается с учетом применения внутренних и наружных направляющих. Часто можно встретить ситуацию, когда для увеличения устойчивости механизма при применении и уменьшения размеров в сжатом состоянии применятся конический вариант исполнения. Это связано с тем, что в сжатом состоянии рассматриваемый вид пружины имеет высоту, равную диаметру применяемой проволоки

Все кольца вкладываются друг в друга, что напоминает спираль.

Отличительной особенностью можно назвать то, что конический вид изделия характеризуется сугубо нелинейной характеристикой из-за равномерного изменения величины диаметра всех витков.

Технология горячей навивки с закалкой и отпуском

Перед навивкой заготовку нагревают до температуры пластичности одним из следующих методов

  • муфельная печь;
  • газовая горелка;
  • высокочастотный нагрев.

Далее заготовка поступает на навивочное оборудование, Проводится корректировка геометрии и формирование плоских торцов.

Термическая обработка включает в себя закалку и низкотемпературный отпуск.

Графики термообработки строятся исходя из свойств материала и размеров заготовки.

Рабочий режим линии печи закалки и отпуска

Далее следует контрольно- измерительный этап. Заканчивается изготовление нанесением антикоррозионной защиты.

Призматические пружины

Может проводится также установка призматических пружин. Этот вариант исполнения характеризуется достаточно большим количеством недостатков. Свойствами изделия можно назвать следующее:

  1. Изделие обладает относительно невысокой устойчивостью. При эксплуатации есть вероятность скручивания или искривления под нагрузкой. Именно поэтому в большинстве случаев проводится установка направляющих, которые размещаются внутри и снаружи. Опора во многом повторяет форму пружины.
  2. Специалисты рекомендуют применять подобный вариант исполнения только в том случае, когда другие не подходят.
  3. В большинстве случае ось витков располагается на призме, которая напоминает вил прямоугольника со скругленными углами.

Специалисты рекомендуют проводить подобный вид пружины только в том случае, когда другие не подходят. Именно поэтому они не получили широкое распространение и применяются крайне редко.

Используемое оборудование и оснастка

Чтобы сделать упругий элемент, требуется специализированное оборудование. Это навивочные станки. Сделать деталь можно и на обычном токарном станке, но потребуется его дооборудование специальной оснасткой. Средние и крупные серии изготавливают на полуавтоматических установках, работающих с минимальным вмешательством оператора. Сделать пружину из проволоки можно и вручную. Для этого также потребуется специальная оснастка.

На следующем этапе механической обработки торцы шлифуются на торцешлифовочных станках. При единичном производстве или малых сериях это можно сделать шлифовальном круге.

Термообработка проводится с применением оправок, предотвращающих деформацию изделия, в специализированных печах для закалки и отпуска. Обе операции можно сделать и в универсальной печи.

Используемое оборудование и оснастка

Для контроля качества используются нагрузочные установки и измерительные комплексы. При единичном производстве измерения можно сделать и универсальным инструментом.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Технология изготовления пружин играет важную роль и имеет большое значение для их беспроблемной долгосрочной эксплуатации. Упругие элементы – это высокотехнологичные изделия, требующие наличия квалификации и опыта от инженеров-конструкторов и технологов, а также хорошего парка оборудования на предприятии-производителе.

От того, насколько правильными были расчеты пружины, подбор материала с учетом требуемых характеристик и особенностей ее применения, а также используемые технологии и точность изготовления, зависит работа целого агрегата, где эта деталь будет комплектующей.

Как правильно выбрать

Первый вопрос, на который надо ответить – как будет эксплуатироваться мебель

Если это раскладной диван для сна, стоит обратить внимание на ортопедические варианты с независимыми блоками. Спать на них гораздо комфортнее, организм будет чувствовать себя отдохнувшим

Выбрать диван вам помогут менеджеры магазина.

Также важно выбрать “правильный” наполнитель. Поролоновые диваны не так надежны и долговечны

Через несколько лет он начнет проседать, и пружинки могут впиваться в людей, которые сидят или лежат на диване

Лучше обратить внимание на кокосовую койру – она жестче и надежнее поролона

Материал её производства это высокоуглеродистая пружинная проволока разной толщины.

Для большинства значимую роль играет стоимость изделия. Диваны с зависимыми пружинными блоками – самые дешевые, но, если планируется долгосрочная эксплуатация изделия, не стоит покупать самые дешевые модели

Лучше обратить внимание на среднюю ценовую категорию, так как такие диваны прослужат дольше и не потребуют ремонта, спустя несколько месяцев

Цены на разные пружины могут отличаться.

Витые пружины сжатия: особенности конструкции и эксплуатации

Данный тип пружин в процессе эксплуатации воспринимает нагрузки, прилагаемые в продольно-осевом направлении. Пружины сжатия изначально имеют просветы между витками, приложение внешней силы приводит к деформации, характеризующейся уменьшением длины изделия, и ограничивается тем моментом, когда витки соприкасаются. При отмене воздействия пружина должна восстановить свою форму и геометрические размеры, какими они были до приложения нагрузки.

Основными размерами, определяющими вид отдельной детали, являются:

  • – Диаметр проволоки (прутков).
  • – Количество витков.
  • – Шаг навивки.
  • – Диаметр изделия.

Наиболее распространенными являются цилиндрические винтовые пружины сжатия, у которых диаметр изделия одинаков по всей длине. Эти детали широко используются в разных отраслях промышленности: приборо- и машиностроении, горношахтной отрасли, газонефтедобыче, других.

Вообще же пружины сжатия могут иметь не только цилиндрическую форму, но и конусную, бочкообразную, более сложную. Шаг витков может быть постоянный и переменный, а навивка – по или против направления движения часовой стрелки.

Это вносит особенности в общепринятую технологию их изготовления.

Характеристики пружин

Для витых цилиндрических и конических:

  • количество витков
  • шаг витка
  • диаметр проволоки
  • предельно воспринимаемая нагрузка
  • линейная зависимость между деформацией (осадкой) пружины и нагрузкой, приложенной к ней
  • сечение ленты
  • число витков
  • число волн на виток
  • коэффициент жёсткости
  • предельная нагрузка

также усталостные характеристики материалов.

Требования к пружинам

Чтобы выполнять свою работу эффективно и правильно, эти элементы должны обладать хорошей прочностью, пластичностью, упругостью, выносливостью и релаксационной стойкостью.

Достижение этих качеств возможно при соблюдении многих факторов, в том числе:

  • – Правильном выборе материала.
  • – Грамотно проведенных расчетах.
  • – Соблюдении технологии изготовления.

Читать также: Как определить концы обмоток трансформатора

Качественные пружины должны соответствовать требованиям ГОСТ и техническому заданию конкретного заказчика.

Согласно стандарту предусмотрены три группы точности по контролируемым деформациям:

  • – С допускаемым отклонениями до 5% (+/-).
  • – До 10%.
  • – До 20%.

В соответствии с этим определены три группы точности по геометрическим параметрам.

Важное требование к этим деталям – чистота поверхности, здесь не допускаются царапины и другие дефекты, так как они приводят к снижению прочности и надежности.

Виды и преимущества механизмов

Способы крепления и расположение пружин в блоке зависит от его типа. Рассмотрим все варианты механизма, расскажем, что такое пружинная змейка в диване, и чем она отличается от мультипакета.

Выбрать качественный диван не так-то просто.

Независимые

Одни из самых надежных и современных блоков. Каждая пружинка находится в индивидуальном чехле из ткани, элементы не соединены между собой. Механическая нагрузка распределяется только на задействованные пружинки: если на какой-то участок нет давления, он не будет проседать под весом.

Независимые пружины считают лучшим вариантом в диванах ежедневного сна.

За счет этой особенности блоки с независимыми пружинами считаются самыми надежными. При выходе из строя одной пружины, не придется чинить целый блок. Диван не будет проседать и терять упругость. Чаще всего в диванах с независимыми блоками, установлены небольшие пружины из тонкой стальной проволоки.

При беспружинном наполнении используется поролон или полиуретан.

Боннель

В этой системе используются двухконусные пружины, которые состоят из 4-5 витков. Они соединены стальной рамой. Конструкция получается внушительная и прочная. Боннель обладает несколькими каркасами, за счет чего достигается жесткость основания. Такая система надежна и долговечна.

Зависимые пружины Bonnel (Боннель) – эконом-вариант наполнителя для мягкой мебели.

Системы боннель очень популярны ввиду своих особенностей:

  • пружины сделаны из высокоуглеродистой стали, экологически безопасные;
  • уложить блок можно на основание из любого материала, в том числе, фанеру или МДФ.

Производство блоков Боннель простое, поэтому базовые матрасы с ними стоят недорого.

В угловых диванах по бокам обкладывается коробами из пенополиуретана, сверху покрывается ватином или войлоком. Используется для диванов с разными раскладными механизмами, встречается в аккордеонах, книжках. Срок службы составляет несколько лет, но при аккуратной эксплуатации может прослужить и дольше.

Мультипакет

По виду и схеме изготовления напоминают независимые пружины. Каждый элемент также помещен в индивидуальный чехол. Разница этих блоков в размере пружинок. Если в стандартных независимых системах элементы крупнее, то в мультипакете используется большое количество пружинок маленького размера.

Пружины меньшего размера более «чутко» реагируют на давление – очень хорошо подстраиваются под пользователя.

При этом диваны с такими блоками очень прочные, способны выдерживать значительный вес.

  • вес распределяется равномерно;
  • пружины не соединены, при выходе из строя одной не сдается система;
  • за счет чехла сломанная пружинка не проглядывается через обивку;
  • обладают поддерживающим эффектом;
  • подходят для большинства моделей.

MicroPocket – для сна, нагрузки до 150 кг.

Приобретая диван с мультиблоком, нужно обратить внимание на количество пружин. Их должно быть не меньше 435

Змейка

Как выглядит пружина змейка в диване: элементы внутри рамы соединены скобами из стали, они взаимозависимые и по внешнему виду напоминают змею.

Пружинные змейки знакомы нам ещё по советской мебели и по факту не является блоком.

Изготавливают такие блоки из оцинкованной стали под воздействием высоких температур. Самыми надежными считаются основания с большим количеством изгибов.

Такой диван быстрее всего «сдается» под весом человеческого тела, глубоко продавливается и начинает напоминать гамак.

Главное преимущество механизма – он дешевый. Однако для частой эксплуатации диваны с пружинной змейкой для мягкой мебели не подходят.

Это самый дешевый, но и самый скрипучий вариант.

Требования к материалу

Пружины для работы в определенных условиях выбираются по типоразмерам с учетом характера и величины нагрузок, характерных для условий эксплуатации. Надежность работы этих деталей определяется многими факторами, в том числе – качеством и структурным состоянием металла/сплава после термической обработки, наличием остаточных внутренних напряжений. Кроме того, важно металлургическое качество стали/ сплава. Так что долговечная беспроблемная эксплуатация начинается с выбора материала с определенным комплексом свойств.

Винтовые пружины сжатия в зависимости от размеров, выполняемой работы и других факторов изготавливаются из различных сталей/сплавов, в том числе из конструкционных рессорно-пружинных, нержавеющих, других.

Наиболее широко используемыми материалами можно назвать сталь 60С2А ГОСТ 14959-79, а также 50ХФА, 51ХФА, 60С2ХФА и аналогичные сплавы. Из нержавеющих самое широкое применение находит сталь 12Х18Н10Т.

Устойчивость пружин

Рассматриваемое изделие характеризуется довольно большим количество особенностей. Довольно распространена характеристика, связанная с непосредственной устойчивостью пружины при установке. Среди особенностей этого показателя отметим следующие моменты:

На момент проектирования механизма уделяется внимание устойчивости, которая рассматривается с учетом применения внутренних и наружных направляющих. Часто можно встретить ситуацию, когда для увеличения устойчивости механизма при применении и уменьшения размеров в сжатом состоянии применятся конический вариант исполнения. Это связано с тем, что в сжатом состоянии рассматриваемый вид пружины имеет высоту, равную диаметру применяемой проволоки

Все кольца вкладываются друг в друга, что напоминает спираль.

Отличительной особенностью можно назвать то, что конический вид изделия характеризуется сугубо нелинейной характеристикой из-за равномерного изменения величины диаметра всех витков.

Особенности технологии

В зависимости от предусмотренного назначения таких деталей и их спецификации уместно говорить об особенностях технологии их производства. Изготовление изделий из материалов, имеющих круглое сечение, может быть выполнено путем холодной или горячей навивки. Первым способом обычно изготавливают мелкие/средние пружины (из проволоки до 8 мм в диаметре), а вторым – крупные.

Кроме того, различие обуславливается применение различных видов термической обработки, что связано с необходимостью придать изделиям определенные характеристики.

Технология холодной навивки пружин без закалки

Навивка заготовок выполняется из проволоки, которая производителем заранее была подвергнута патентированию. Этот процесс представляет собой нагрев до температуры, превышающей интервал превращений, что отлично подготавливает материал для последующей холодной пластической деформации.

В сформированных навивкой заготовках обеспечиваются соответствие таких обязательных параметров, как:

  • Диаметр (этот параметр может быть внутренним, средним или наружным).
  • Количество предусмотренных витков (рабочих и общих).
  • Шаг и размер по высоте изготавливаемой детали (учитываются изменения, возможные в результате последующей обработки).
  • Правильность выполнения поджатия крайних витков.

Следующий этап – механическая отделка (торцевание), в процессе которой концевые витки (нерабочие) обрабатываются до образования поверхности, перпендикулярной оси. После этого производится термическая обработка – в данном случае – только низкотемпературный отпуск. Это придает постоянные упругие свойства и нивелирует созданные при навивке напряжения. Важный технологический момент – правильно определить температуру и время воздействия, ориентируясь на диаметр выбранного материала и требования стандартов. Термообработанные пружины подвергаются контролю и испытаниям на соответствие параметров требованиям чертежей.

Если по требованиям эксплуатации предусмотрено антикоррозионное покрытие, его нанесение становится последним этапом производства таких деталей. Только в том случае, если применялась гальваника, детали прогреваются для обезводороживания.

Технология холодной навивки пружин с закалкой и отпуском

Отличие данной технологии от описанной ранее начинается только на этапе термической обработки. Предыдущие действия: навивка и необходимая механическая обработка, выполняются точно так же.

Первым этапом термической обработки выполняется закалка: нагрев до определенной температуры (в зависимости от используемого материала), выдержка детали в течении указанного времени и принудительное (быстрое) охлаждение специальной среде, в основном в масле (иногда в воде, солевом растворе, других). Важно: для нагрева пружин под закалку их располагают горизонтально во избежание просадки под собственным весом.

Завершается термообработка отпуском – прогревом до сравнительно небольшой температуры и выдержкой строго определенное время для придания необходимых качеств.

После этого производится контроль таких параметров, как твердость, правильность сжатия/восстановления. Если предусмотрено технологией изготовления конкретной детали – применяется очистка пескоструем, упрочнение дробью, нанесение предотвращающего коррозию защитного покрытия.

Технология горячей навивки пружин с закалкой и отпуском

Горячая навивка подразумевает предварительный прогрев материала в электрической или газовой печи (возможный вариант – применение токов высокой частоты).

Подготовленная таким образом заготовка подвергается навивке согласно требованиям техзадания, разводке, а также торцовке и доводке геометрических значений с помощью инструментов. После этого деталь подается на закалку, параметры которой определяются используемым материалом, а потом – на отпуск.

По окончании термообработки производится контроль параметров и, если это необходимо, обжатие, заневоливание, другие дополнительные операции и обработка поверхности. Завершается процесс производства окрашиванием и сушкой.

Плюсы и минусы использования диванов, оснащенных пружинными блоками

Как правило, интересующий нас механизм встраивается в те предметы мягкой мебели, которые предназначены для сна, то есть в раскладывающиеся. После трансформации такие диваны превращаются в максимально комфортное спальное место, удобное, и по размерам подходящее для вольготного отдыха.

Данный механизм является универсальным и очень удобным, однако, кроме этого имеет он еще массу достоинств, которые нужно учесть перед покупкой

Рассмотрим плюсы интересующих нас предметов мебели, оснащенных пружинными блоками.

Таблица 1. Достоинства использования диванов, оснащенных пружинными блоками

Достоинство Описание
Долгий срок службы Если вы выберете в магазине качественное изделие интересующего нас типа, то использовать его вы сможете долгие года после, даже в том случае, если диван станет не местом для вечернего отдыха, а интенсивно и постоянно использующимся местом для сна
Способность выдерживать большие веса Пружинные блоки предназначены для выдерживания больших нагрузок, поэтому, использовать их можно в качестве спального места даже для людей, склонных к полноте или имеющих явный лишний вес. При этом никто из упомянутых лиц не будет испытывать какой-либо дискомфорт, например, от продавливания.
Подстройка под особенности тела Пружинные блоки помогают основанию дивана создавать как бы эффект памяти тела. Иными словами, они подстраиваются под ваши габариты и иные параметры туловища, и создают максимально удобные условия для отдыха и сна.
Устойчивость к деформации Качественные стойки пружин даже после длительного использования не деформируются. Кроме того, проявляют они и определенную устойчивость к падениям, толчкам и прочим «нападениям» с вашей стороны, поэтому, их свойства сохраняются максимально долго.
Универсальность применения Данные механизмы могут встраиваться в диваны различного типа, оснащенные всяческими механизмами трансформации, например, в диваны-книжки, поэтому, вы можете выбрать изделие себе по вкусу, не отказываясь при этом от желанной модели только потому, что хотите встроенный пружинный блок.
Приемлемая стоимость На удивление, данные пружинные блоки, встроенные в диван, не слишком увеличивают цену конструкции. Хотя, определенно, стоимость на оснащенную ими мебель нельзя назвать низкой, тем не менее, она доступна практически каждому покупателю, что, разумеется, не может не порадовать нас.

Конечно, самостоятельно сконструировать такую сложную систему для комфортного отдыха почти невозможно, так как она требует наличия большого количества разнообразной производственной аппаратуры

Тем не менее, нельзя сказать, что у интересующих нас пружинных блоков имеются лишь одни плюсы, так как это в корне не верно. В действительности они не лишены некоторых минусов. Давайте взглянем и на них.

Таблица 2. Недостатки диванов со встроенными пружинными блоками

Низкое качество поролона

К сожалению, довольно часто бывает, что в качестве набивки для диванов, оснащенных пружинными блоками, используется поролон низкого качества. Конечно, это удешевляет общую стоимость предмета мебели, однако, в конечном итоге приводит к быстрой потере им упругости и формы. Как следствие, через малое количество времени становится просто невозможно сидеть или спать на таком диване.

Низкое качество пружин

Бывает и так, что производители решают сэкономить на качестве пружинного блока, и производят его из неподходящих для этого материалов. Как следствие, основной «скелет» мягкого предмета мебели обладает минимальными амортизационными характеристиками, что приводит к проседанию пружин, и, впоследствии вновь к поломкам.

Чрезмерно высокая стоимость

Некоторые производители, пользуясь незнанием клиентов, посещающих их магазин, заламывают огромную цену за диваны, аргументируя тем, что они оснащены высококачественным пружинным блоком. К сожалению, пружинный блок пружинному блоку рознь, и далеко не за каждый из них нужно отдавать баснословные суммы

К счастью, таких недобросовестных продавцов и производителей сегодня не много, но все же лучше соблюдать осторожность и ходить к проверенным компаниям.

Используемое оборудование и оснастка

Для изготовления пружин требуется различное оборудование, которое лучше всего соответствует требованиям каждого шага технологического процесса.

Навивка осуществляется или на специальных пружинонавивочных станках, или на переоборудованном для этих целей токарном оборудовании. Возможно также использование ручной оснастки или специализированных полуавтоматов. Дальнейшая обработка – механическая – осуществляется торцешлифовальными станками, а термическая – в закалочных и отпускных печах. Важно: для предотвращения коробления при термообработке используются специальные оправки. Для деталей небольшого размера они применяются при отпуске, а большие проходят закалку на оправке.

Контроль качества также проводится на специальном, предназначенном именно для этого процесса оборудовании.

Составные пружины

Пружина составного типа используются в случае больших нагрузок. Среди особенностей отметим:

  1. В большинстве случаев изделие работает на сжатие. При этом все элементы имеют одинаковую длину.
  2. Составной вариант исполнения представлен сочетанием нескольких, которые имеют различный диаметр витков и вставляются друг в друга. При этом все они имеют общую ось, за счет чего обеспечивается равномерное распределение нагрузки.
  3. Для снижения вероятности перескоков витков, из-за чего не происходит сжатие, их выполняют в противоположном направлении закручивания.

Подобный вариант исполнения получил весьма широкое распространение, устанавливается на автомобилях и другом оборудовании. Не стоит забывать о том, что за счет увеличения количества пружин существенно повышается стоимость изделия.

Виды

Пружинные элементы, рассчитанные на скручивание, применяются в различных сферах – от бытовой до многих видов промышленности (в механизмах и агрегатах). Пружины разделяют на типы и виды, исходя из разных критериев:

  • по направлению намотки – левые и правые;
  • по конструктивным особенностям – торсионные и витые пружины;
  • одинарные и двойные.

Также многообразие пружин включает в себя изделия, произведённые из разных марок упругих сталей, покрытых слоем различных металлов для предотвращения коррозии и прочих повреждений.

Основными типами можно считать витые и торсионные пружины, спиральные и винтовые используются реже.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *