Неподрессоренная масса автомобиля что это такое
Перейти к содержимому

Неподрессоренная масса автомобиля что это такое

  • автор:

Неподрессоренная масса автомобиля

Неподрессоренная масса автомобиля

Определение – неподрессоренная масса, можно заметить в обзорах автомобилей и технической документации. Чаще всего, конструктивный термин употребляется в темах о смене колёсных дисков или шин, на более лёгкие модели. Однако, функциональность этого расчётного определения гораздо шире. Предлагаем поближе ознакомится с конструктивной особенностью этого понятия, и совместно найти ответы на главные вопросы о неподрессоренной массе.

Неподрессоренная масса автомобиля – что это?

nepodressorennaya-massa (4).jpg

Само название – неподрессоренная масса, содержит частичный ответ на своё определение. Другими словами, это узлы и детали подвески, неподдерживаемые рессорами, пружинами и амортизаторами. А всё что находится поверх рессор и подвески, определяется, как – подрессоренная масса. Её состав включает в себя: кузов, раму, силовую установку и трансмиссию.

Совокупность веса: колёс, ступиц, тормозных узлов, ШРУСов, балок, мостов и частей рулевого управления, пружин и рессор, является составляющим неподрессоренной массы. В английском языке, этот термин звучит более понятно — unsprung mass, что в переводе означает – неподпружиненная масса. Действительно, определение в таком ключе усваивается проще. Но изменять инженерный язык нельзя.

Как неподрессоренная масса влияет на характеристики автомобиля

nepodressorennaya-massa (7).jpg

Как было написано выше, подрессоренная масса состоит из множества узлов и деталей. Каждый элемент выполняет определённые функции. То есть, это не подвешенная платформа в виде балласта.

Согласно расчётам конструкторов, совместная и слаженная работа всех узлов подвески, обеспечивает автомобилю необходимые характеристики:
— плавный ход;
— стабильность на дороге;
— динамику и степень расхода топлива.

Влияние на плавность хода

nepodressorennaya-massa (3).jpg
Какое влияние оказывает подрессоренная масса на комфорт передвижения? Разбирать текущий вопрос следует с самого простого, а именно с плавности хода. Он напрямую зависит от неподрессоренной массы. Например, передвижение по неровностям, заставляет колёса передавать силу сжатия на другие элементы подвески, отдавая им часть нагрузки. Каждая деталь, забирает определённый процент усилия, в меньшей степени передавая его на кузов. Пропорции масс подвески и кузова автомобиля, влияют на ощутимость передающегося усилия. Например, если столкнуть два мяча разных весов, то отскочит более лёгкий.
Такой принцип действует и в конструкции автотранспорта. Меньшая неподрессоренная масса по отношению к подрессоренной, будет слабее передавать усилие на кузов. Следовательно, машина будет двигаться плавнее. Возникает сопутствующий вопрос: можно ли снизить неподрессоренную массу? Отвечаем, да можно. Например, облегчённой подвеской.
Кроме того, увеличить разницу возможно дополнительным весом в кузове. Но это не рентабельно, так как будет повышен расход топлива и подвеска не долго прослужит в режиме постоянной дополнительной нагрузки. Автомобилисты стараются наоборот, облегчать свои авто.
nepodressorennaya-massa (5).jpg
Для примера, возьмём модель лёгкого грузовика — пикап. Это идеальное несоответствие неподрессоренной и подрессоренной масс. Кузов пикапа предусматривает транспортировку тяжёлых грузов. В порожнем состоянии, неподрессоренная масса имеет преимущественное влияние на подрессоренную. Как результат, у машины отсутствует плавность движения и она начинает «козлить». Но в загруженном состоянии, подрессоренная масса становится больше, и у автомобиля появляется плавность хода, а водитель чувствует комфорт в управлении.

Влияние на управляемость машины

nepodressorennaya-massa (8).jpg

Представленный выше пример с пикапом, отображает картину о плавности хода. Этот же тип автомобиля, поможет нам разобраться в вопросе об устойчивости и стабильности транспорта на дороге. Итак, нам стало понятно, что при наезде на помеху, составляющие элементы неподрессоренной массы движутся вверх. Наехавшее колесо передаёт усилие подвеске и освобождается от нагрузки. Следовательно, чем меньше соотношение подрессоренной массы по отношению к неподрессоренной, тем колесо дольше будет оставаться без нагрузки (пример с пустым пикапом). Если соотношения масс поменять, то схема получит обратный результат. То есть, колесо будет работать под нагрузкой больше.

Ещё один пример с пикапом. Двигаясь без груза по грунтовой или неровной дороге, заднюю часть автомобиля будет постоянно сносить из стороны в сторону. Особенно на поворотах. Это сказывается эффект жёсткой амортизации (козления). Но как только кузов будет загружен, неприятное явление исчезает. Автомобиль становится более устойчивым и стабильным в управлении.

Как неподрессоренная масса влияет на динамические показатели автомобиля

Улучшение динамики и расход топлива, зависят не от всей неподрессоренной массы, а преимущественно от вращающихся узлов и деталей. К ним относятся: покрышки, обода и приводные валы. Арифметика проста, чем тяжелее деталь, тем сложнее её заставить вращаться. Следовательно, производители стараются делать вращающиеся элементы лёгкими, без потери характеристик прочности и надёжности.
nepodressorennaya-massa (6).jpg
Новаторским решением конструкторов, можно считать применение карбона в изготовлении карданных передачах. Колёса уже получили несколько облегчённых типов, и это направление продолжает совершенствоваться. Рынок предлагает покупателям различные диски: кованые, легкосплавные и карбоновые. Новые шины обладают энергоэффективностью с уменьшенной массой с пониженным сопротивлением качения.
nepodressorennaya-massa (2).jpg
Масса колёс и расход топлива, взаимосвязаны. Кроме того, динамические характеристики зависят от веса шин и дисков. Лёгкое колесо можно быстрее раскрутить, без значительных затрат энергии, то есть, с экономией топлива. А появление дополнительной скорости, позволяет увеличить динамические характеристики.
В наших шинных центрах вы можете купить легкосплавные и кованые автомобильные диски в замену штампованным.

Как правильно оптимизировать неподрессоренную массу

nepodressorennaya-massa (9).jpg

Какой вывод можно сделать об оптимальном значении неподрессоренной массы? Анализируя материал статьи и принимая во внимание решения инженеров-конструкторов авто, можно смело говорить о том, что соотношение неподрессоренной массы должно быть, как можно меньше подрессоренной. Для этого не рекомендуется увеличивать вес кузова, так как конструкция автомобиля рассчитывалась под определённые параметры. Только облегчённая независимая подвеска, легкосплавные диски и специальные шины, смогут обеспечить комфорт и экономичность передвижения в современных автомобилях.

Неподрессоренная масса автомобиля что это такое

Что такое неподрессоренная масса?
Понять, что такое неподрессоренная масса, несложно: это масса, не поддерживаемая «рессорами» — ну или другими несущими элементами подвески. То есть, все, что несет на себе подвеска – это подрессоренная масса: в нее входят кузов, рама, силовой агрегат и прочие элементы «верхней части» автомобиля. Все же, что находится «ниже амортизаторов и пружин» – это неподрессоренная масса, причем сами несущие элементы подвески тоже добавляют к неподрессоренной массе часть веса.

В число составляющих неподрессоренной массы входят диски, шины, тормозные механизмы, ступичные подшипники и сами ступицы, приводные валы, полуоси, ШРУС, балки и мосты подвески, а также сами пружины и амортизаторы – и рессоры, конечно. К слову, в английском языке термин «неподрессоренная масса» звучит как «unsprung mass» – то есть, «неподпружиненная масса», что несколько проще для понимания.

Дело в том, что самое важное — это соотношение подрессоренной и неподрессоренной масс. От него, к примеру, зависит плавность хода. Чем больше неподрессоренная масса, тем хуже плавность хода. Именно поэтому старые машины на тяжеленных колёсах и шкворневых подвесках этой самой плавностью не отличаются. Знакомая, наверное, многим картина: как только багажник оказался хорошо загружен — плавность хода увеличивается. Это именно за счёт изменения соотношения подрессоренных и неподрессоренных масс.

Как неподрессоренная масса влияет на плавность хода?

Начнем с простого: неподрессоренная масса как таковая влияет на плавность хода. Объяснить это просто: при наезде на дорожную неровность колесо и другие элементы неподрессоренной массы поднимаются вверх, передавая определенное усилие. Оно частично гасится элементами подвески, а частично передается на кузов – и от соотношения массы кузова и неподрессоренной массы зависит то, насколько ощутимым будет передающееся усилие. Условно говоря, если стукнуть два мяча друг о друга, сильнее сдвинется тот, что будет легче. Аналогичная ситуация и здесь: чем меньше будет неподрессоренная масса относительно подрессоренной, тем меньше будет ощущаться усилие, передаваемое ей на кузов. Ну а изменять это соотношение можно только за счет уменьшения неподрессоренной массы, поскольку увеличивать ради этого массу самого автомобиля никто не станет – работа идет как раз над обратным.
Наверное, не нужно быть Эйнштейном, чтобы понимать действие инерционных сил на автомобиль. Именно им мы обязаны всевозможными заносами и сносами. Но важно не только это. Чем больше неподрессоренная масса, тем сильнее на детали действуют инерционные силы. Допустим, вы двигаетесь на немолодом внедорожнике с зависимым задним мостом, при котором массивный редуктор, полуоси и ступицы с немаленькими колёсами. При проезде волнистого участка дороги будет очевидно, что задняя ось постоянно уплывает. Всё потому что задний мост под действием инерционных сил просто не всегда будет успевать возвращаться вниз. От этого сцепление будет ухудшаться, и ось начнёт «гулять». Эти же инерционные силы мешают эффективно тормозить тяжелыми колёсами. Да и разгоняться с такими труднее.
Пример неоптимального соотношения неподрессоренной и подрессоренной масс можно отследить на примере пикапов. У них грузовой отсек рассчитан на перевозку сравнительно больших грузов, и когда кузов пуст, неподрессоренная масса оказывает заметно большее влияние, чем могло быть в идеальных условиях: в результате автомобиль «козлит», подпрыгивает на неровностях и не обеспечивает большого комфорта. Когда же кузов загружен, подрессоренная масса вырастает, и ее соотношение с неподрессоренной становится больше – а значит, улучшается комфорт и плавность хода.

На что влияет неподрессоренная масса?

Чтобы полноценно ответить на этот общий вопрос, стоит понимать, что неподрессоренная масса – это не монолитный груз, подвешенный снизу на автомобиль, а сочетание разных деталей и элементов конструкции, выполняющих разные функции. Однако в целом она влияет на следующие характеристики автомобиля:

— устойчивость и стабильность автомобиля;

— расход топлива и динамические характеристики.

Выходит, что, изменив соотношение масс, можно увеличить плавность хода. И тут есть два пути. Можно увеличить подрессоренную, к примеру, ездить с балластом в багажнике, потеряв в расходе топлива и динамике. А можно уменьшить неподрессоренную. И это куда интереснее. Вот тут-то нам могут помочь кованые диски, вес каждого из которых может отличаться больше чем на 10 килограммов по сравнению с литьём. Кроме того, что они куда прочнее обычных стальных или литых. А ещё основная их масса сосредоточена ближе к ступице, что снижает момент инерции. Проще говоря, инерционные силы, действующие на раскрученное кованое колесо, куда меньше мешают ему двигаться поступательно, то есть в том направлении, куда нам хочется. Выходит, что просматривая объявления о продаже автомобилей, не стоит скептически относится к «переобутому» в кованые колёса лоту. Против физики не попрёшь. Лучше с ней дружить.

ВЕС ДИСКОВ ИМЕЕТ ЗНАЧЕНИЕ!

Тот факт, что большая масса автомобиля замедляет его ускорение и удлиняет тормозной путь, ни у кого сомнений не вызывает. В то же время, вопрос массы колёсных дисков и резины не так уж часто «всплывает» при обсуждении этой проблемы.

Между тем эта масса имеет весьма большое значение: во-первых, эти детали входят в состав неподрессоренной массы автомобиля, а во-вторых от неё зависит такой важный показатель, как инерция вращения.

Неподрессоренная масса состоит из суммы масс резины, колёсных дисков, тормозных механизмов, некоторых частей подвески – в общем, всего того, что двигается вертикально относительно кузова автомобиля синхронно с колёсами. Неподрессоренная масса типичного автомобиля составляет около 15% его полной массы. Если не учитывать влияние упругих свойств авторезины, вся эта масса двигается вверх и вниз в зависимости от неровностей дороги.

Соотношение подрессоренной и неподрессоренной массы автомобиля является чрезвычайно важным показателем, так как сила, с которой неподрессоренные компоненты подталкивают автомобиль снизу вверх на неровностях дороги, должна выравниваться подрессоренной массой, которая принимает на себя эти толчки. В момент, когда колесо наезжает на бугор, на него начинает действовать сила, подбрасывающая колесо вверх со скоростью, которая зависит от упругости покрышки, размера бугра и скорости автомобиля. При этом, чем больше неподрессоренная масса, тем большую кинетическую энергию должна поглотить подвеска – если мы не хотим, чтобы так же была подброшена вверх подрессоренная масса, т.е. кузов со всем, что в нём находится. Таким образом, чем меньше неподрессоренная масса, тем мягче будет ход автомобиля. Если соотношение масс неблагоприятное, колеса не будут с достаточной силой прижиматься к поверхности дороги на неровностях – то есть пострадает не только мягкость хода, но и «хватка» автомобиля за дорогу.

Инерция – свойство объекта сопротивляться изменениям. Соответственно, инерция автомобиля – основная сила, которая преодолевается в процессе ускорения. В последующем, уже при движении, инерцию будет необходимо преодолевать уже для торможения. Если обратиться к точной формулировке из физики, то «инерция есть свойство материи оставаться в покое либо в состоянии равномерного поступательного движения до тех пор, пока к ней не будет приложена внешняя сила». Причём же тут колёса – кроме, конечно, того факта, что их масса является составной частью общей массы автомобиля? В отличие от большинства других деталей автомобиля, колёса раскручиваются, когда вы нажимаете на газ – тем самым вы придаёте им энергию для вращения. Чем колёса тяжелее, тем больше энергии и времени требуется на то, чтобы изменить скорость их вращения. Это ещё не всё – вместе с колёсными дисками и покрышками вращаются также тормозные диски и карданный вал, причём с той же скоростью. Ещё быстрее порой раскручиваются детали трансмиссии и консольная часть вала у заднеприводных и полноприводных автомобилей. Далее, коленвал, демпфер колебаний, маховик и муфты – все раскручиваются до оборотов двигателя, а это весьма высокий показатель. На низких передачах всем этим многочисленным деталям приходится раскручиваться на большую скорость за малые промежутки времени – а это значит, что сопротивление силы их инерции становится очень значительным.

Итак, каковы же последствия вышеизложенных проблем на практике? Для примера возьмём последнюю модель Honda Civic с колёсными дисками и резиной из специального набора для апгрейда. Стандартно автомобиль комплектуется резиной 185/65 производства Dunlop и стальными 14-дюймовыми дисками.

Каждое колесо при этом весило 15,5 кг. Их сменили на покрышки Nitto 205/40 и 17-дюймовые диски, при этом вес каждого колеса увеличился до 19,5 кг. Этих четырёх килограммов (26%) лишнего веса на каждое колесо хватило для того, чтобы мощность автомобиля по замерам на динамометрическом стенде снизилась на целых 5%. Это говорит о том, что увеличение массы вращающихся деталей даже на килограмм уже вполне существенно: в данном случае каждый килограмм, добавленный к каждому колесу Honda Civic, «съел» более 1% мощности, измеренной на колёсах.

Увеличение размеров дисков и колёс

Предположим, вы ездите на 15-дюймовых дисках и резине 205/65. Это вполне заурядная конфигурация: в Австралии, к примеру, это стандартная комплектация полицейских машин. Диск весит около 9,5 кг, а типичная покрышка 205/65 – немногим менее 10 кг. Таким образом, у нас есть 4 колеса по 19,5 кг каждое.

Допустим, вы решили сохранить резину, но сменили диски на легкосплавные, 15-дюймовые. Допустим, они буду весить 8 кг, таким образом, каждое колесо станет весить 18 кг, сбросив полтора килограмма, или примерно 8%.

Вы какое-то время ездите вполне довольным, а затем решаете сменить покрышки на 16-дюймовые 225/50. Ваш выбор падает, скажем, на диски ROH Reflex весом 8 кг и резину Yokohama S1-Z, которая тянет на 10,7 кг. Таким образом, каждое колесо стало весить 18,7кг – в итоге по сравнению с оригинальным набором вы выиграли всего 0,7 кг на колесо, хотя и приобрели очень хорошие покрышки.

Продолжим наши выкладки. Допустим, вы решили ещё раз сменить и диски, и резину, «запав» на 17-дюймовые ROH Z5 по 8,5 кг каждый, и Yokohama A520 формата 235/45, по 11,9 кг каждая. Таким образом, вы довели вес каждого колеса до 22 кг – белее, чем на 20% тяжелее изначального. Такая прибавка вполне реально будет стоить вам замедленного разгона автомобиля.

Вероятно, покупая в следующий раз диски и покрышки, вы будете куда внимательнее относиться к их весу.

ВЕС ПОДВЕСКИ ИМЕЕТ ЗНАЧЕНИЕ!

Из вышесказанного стало ясно, что вес неподрессоренных масс, в частности колес влияет на ряд параметров такие как разгон и динамика автомобиля, износ тормозных колодок, т.к. чем больше инерция тем больше работы необходимо произвести тормозам чтобы остановить автомобиль, расход топлива конечно же, за счет облегчения крутящего момента колеса. Облегченной подвеске проще отрабатывать неровности, так так при разных массах колеса и подвески наезжая на одно и тоже препятствие, подвеска будет совершать возвратно поступательное движение, а соответственно чем больше масса подвески тем с большей инерцией ступица и рычаги будут совершать поступательное движение, значит нагрузка на амортизатор и узлы возрастет.

КАКОЙ ДОЛЖНА БЫТЬ НЕПОДРЕССОРЕННАЯ МАССА?

Обобщая и подытоживая все вышесказанное, можно сделать главный вывод: усилия инженеров направлены на максимальное уменьшение неподрессоренной массы. Увеличение отношения подрессоренной и неподрессоренной массы нельзя осуществить за счет увеличения подрессоренной массы, а это значит, что единственный способ реализовать желаемое отношение – уменьшить неподрессоренную. Именно поэтому в современных автомобилях мы видим алюминиевые подвески, кованые диски, независимые подвески, исключающие из неподрессоренной массы балки, мосты и карданы, и другие технические решения, направленные на ее снижение.

Что такое неподрессоренная масса, и на что она влияет

Неподрессоренная масса – один из терминов, часто используемых в тест-драйвах и материалах о доработке автомобилей. Обычно он упоминается в контексте замены дисков на более легкие, но само понятие неподрессоренной массы заметно шире. Разбираемся, что это такое, и на что влияет этот параметр.

1. Что такое неподрессоренная масса?

Понять, что такое неподрессоренная масса, несложно: это масса, не поддерживаемая «рессорами» — ну или другими несущими элементами подвески. То есть, все, что несет на себе подвеска – это подрессоренная масса: в нее входят кузов, рама, силовой агрегат и прочие элементы «верхней части» автомобиля. Все же, что находится «ниже амортизаторов и пружин» – это неподрессоренная масса, причем сами несущие элементы подвески тоже добавляют к неподрессоренной массе часть веса.

В число составляющих неподрессоренной массы входят диски, шины, тормозные механизмы, ступичные подшипники и сами ступицы, приводные валы, полуоси, ШРУС, балки и мосты подвески, а также сами пружины и амортизаторы – и рессоры, конечно. К слову, в английском языке термин «неподрессоренная масса» звучит как « unsprung mass » – то есть, «неподпружиненная масса», что несколько проще для понимания.

2. На что влияет неподрессоренная масса?

Чтобы полноценно ответить на этот общий вопрос, стоит понимать, что неподрессоренная масса – это не монолитный груз, подвешенный снизу на автомобиль, а сочетание разных деталей и элементов конструкции, выполняющих разные функции. Однако в целом она влияет на следующие характеристики автомобиля:

  • плавность хода;
  • устойчивость и стабильность автомобиля;
  • расход топлива и динамические характеристики.

3. Как неподрессоренная масса влияет на плавность хода?

Начнем с простого: неподрессоренная масса как таковая влияет на плавность хода. Объяснить это просто: при наезде на дорожную неровность колесо и другие элементы неподрессоренной массы поднимаются вверх, передавая определенное усилие. Оно частично гасится элементами подвески, а частично передается на кузов – и от соотношения массы кузова и неподрессоренной массы зависит то, насколько ощутимым будет передающееся усилие. Условно говоря, если стукнуть два мяча друг о друга, сильнее сдвинется тот, что будет легче. Аналогичная ситуация и здесь: чем меньше будет неподрессоренная масса относительно подрессоренной, тем меньше будет ощущаться усилие, передаваемое ей на кузов. Ну а изменять это соотношение можно только за счет уменьшения неподрессоренной массы, поскольку увеличивать ради этого массу самого автомобиля никто не станет – работа идет как раз над обратным.

Пример неоптимального соотношения неподрессоренной и подрессоренной масс можно отследить на примере пикапов. У них грузовой отсек рассчитан на перевозку сравнительно больших грузов, и когда кузов пуст, неподрессоренная масса оказывает заметно большее влияние, чем могло быть в идеальных условиях: в результате автомобиль «козлит», подпрыгивает на неровностях и не обеспечивает большого комфорта. Когда же кузов загружен, подрессоренная масса вырастает, и ее соотношение с неподрессоренной становится больше – а значит, улучшается комфорт и плавность хода.

3. Как неподрессоренная масса влияет на устойчивость и стабильность автомобиля?

Эти показатели напрямую проистекают из предыдущего объяснения о воздействии неподрессоренной массы на подрессоренную и их взаимного отношения. Все просто: в момент наезда на препятствие неподрессоренная масса движется вверх, и колесо разгружается, а то и вовсе отрывается от дороги. Чем выше при этом неподрессоренная масса относительно подрессоренной, тем дольше колесо будет находиться в таком «подвешенном» состоянии, и наоборот – чем тяжелее автомобиль относительно неподрессоренных масс, тем он быстрее «прижимает» их обратно к дороге.

Продолжая пример с пикапами, можно провести аналогичную параллель. Пустой пикап, двигаясь по неровной дороге, будет больше подпрыгивать на неровностях, и в повороте эти вертикальные колебания будут заметно влиять на устойчивость автомобиля: корму будет переставлять, сносить или уводить в сторону. Если же заполнить кузов грузом, вертикальные колебания кузова снизятся, и автомобиль будет увереннее вести себя в повороте, заметно меньше разгружая колеса на неровностях: это значит, что вырастут показатели устойчивости, стабильности и, в какой-то мере, управляемости.

5. Как неподрессоренная масса влияет на расход топлива и динамические характеристики?

На эти показатели более всего влияет не вся неподрессоренная масса как таковая, а прежде всего элементы, преобразовывающие крутящий момент в движение – шины, диски и приводные валы, которые в случае с зависимой подвеской также считаются частично неподрессоренной массой. Здесь действует простой принцип: более тяжелое колесо или вал труднее раскрутить и обеспечить ему постоянное вращение. Поэтому как приводные валы, так и колеса стараются сделать легкими, сохранив показатели прочности и надежности.

В случае с валами это можно иллюстрировать появлением карбоновых карданных валов, ну а колеса как один из самых легкозаменяемых элементов конструкции – буквально бесконечное поле для тюнинга и улучшения. Здесь и легкосплавные и кованые диски, и диски из карбона, и более энергоэффективные шины с меньшей массой и сниженным сопротивлением качению.

Взаимосвязь колес с расходом топлива и динамическими характеристиками очевидна: чем легче колесо, тем проще и быстрее его будет раскрутить – соответственно, на это потребуется меньше затрат энергии и меньше времени, что означает меньший расход и лучшую динамику автомобиля.

6. Какой должна быть неподрессоренная масса?

Обобщая и подытоживая все вышесказанное, можно сделать главный вывод: усилия инженеров направлены на максимальное уменьшение неподрессоренной массы. Увеличение отношения подрессоренной и неподрессоренной массы нельзя осуществить за счет увеличения подрессоренной массы, а это значит, что единственный способ реализовать желаемое отношение – уменьшить неподрессоренную. Именно поэтому в современных автомобилях мы видим алюминиевые подвески, кованые диски, независимые подвески, исключающие из неподрессоренной массы балки, мосты и карданы, и другие технические решения, направленные на ее снижение.

Неподрессоренная масса

Porsche Panamera 4S на кованых дисках Beneventi K5.0

Неподрессоренная масса – суммарная масса дисков, шин и элементов тормозной системы. Остальные элементы автомобиля, которые удерживаются над землей подвеской, называют подрессоренной массой.

Соотношение неподрессоренной и подрессоренной массы имеет большое значение. Сила, с которой неподрессоренные компоненты воздействуют на автомобиль снизу вверх, должна компенсироваться весом подрессоренной массы. Иначе автомобиль потеряет сцепление с поверхностью дороги и станет неуправляемым.

Езду на автомобиле на литых и кованых дисках, можно грубо сравнить с бегом в валенках и спортивных кроссовках. Ведь не зря люди придумали свой тип обуви под каждый вид активности. Аналогично и для дисков – сочетание классических принципов дизайна с функциональностью.

Помимо управляемости вес колёс влияет на динамику разгона и торможения. Чем тяжелее колеса, тем больше энергии и времени требуется автомобилю, чтобы изменить скорость их вращения. Установка лёгких кованых дисков позволяет значительно улучшить эти показатели.

Соотношение масс

Неподрессоренная масса

Соотношение неподрессоренных и подрессоренных масс в автомобиле составляет в среднем 1:15. Меняя это соотношение, можно добиться более высокой плавности хода автомобиля. Это соотношение можно изменить двумя способами: увеличив подрессоренную массу либо уменьшив неподрессоренную.

Однако, если увеличивать подрессоренную массу, к примеру, загрузить салон автомобиля, то разгонная динамика заметно ухудшится.

Благодаря замене дисков на более лёгкие, и соответственно уменьшив неподрессоренную массу своего автомобиля, вы сможете улучшить динамику и добьётесь при этом высокой плавности хода.

Снижение массы диска всего на 1 килограмм с точки зрения динамики эквивалентно уменьшению массы в салоне автомобиля приблизительно на 1,5 кг. С точки зрения комфорта – на 10 кг.

Таким образом, если вы снижаете вес каждого диска на 2 килограмма (что в сумме дает 8 килограммов), то ваша машина будет ехать также плавно, как если бы в нее сел пассажир весом 80 кг., и так же быстро как будто из салона выкинули 15 кг, а пассажир не садился вовсе.

Кованый диск Rocksroad B2 22x9.5 Graphite Diamond Closs

Кованый диск Rocksroad B2 22×9.5 Graphite Diamond Closs

Пример

Один оригинальный литой диск диаметром 22″ от 2015 Range Rover Autobiography весит 23 кг, а его аналог – кованый диск Rocksroad B2 22″ весит всего 16 кг, при этом имея значительно больший запас прочности. Таким образом можно снизить массу каждого диска более, чем на 5 кг.

Выводы

Кованые диски Rocksroad Diamond на 2012 Range Rover Sport Supercharged (3)

Кованые диски Rocksroad Diamond на 2012 Range Rover Sport Supercharged

Большинство клиентов Wheels Boutique Moscow отмечают именно большую плавность хода, даже при переходе на больший диаметр колёс. Владельцы спортивных заряженных автомобилей получают подтверждение разницы в сравнении показаний RaceLogic. Некоторые клиенты обращают внимание и на снижение расхода топлива, что является также приятным бонусом.

Автомобиль действительно ведёт себя иначе на более лёгких дисках. Если вы успели накатать несколько тысяч километров и уже привыкли к автомобилю, то обязательно почувствуете, что автомобилю стало легче разгоняться, останавливаться, поворачивать.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *