Что является основной характеристикой конденсатора
Перейти к содержимому

Что является основной характеристикой конденсатора

  • автор:

Конденсатор. Принцип работы, основные характеристики.

.Конденсатор. Принцип работы, основные характеристики.

Конденсатор — распространенный двухполюсный электронный компонент, главным свойством которого является способность накапливать электрический заряд и «отпускать» его обратно. Процесс накопления заряда называется зарядкой, а процесс его потери – разрядкой.

Выпускаются конденсаторы самых разных типов и конструкций. Наиболее распространены в электронике и любительской радиотехнике следующие виды:

  • Керамические конденсаторы
  • Танталовые конденсаторы
  • Электролитические конденсаторы
  • Конденсаторы переменной емкости

Выпускаются конденсаторы самых разных типов и конструкций.

При включении в цепь электролитических конденсаторов необходимо соблюдать полярность. Отрицательный контакт, обычно, короче положительного и дополнительно может обозначаться соответствующими пометками на корпусе. Для керамических конденсаторов полярность подключения не имеет значения.

В простейшем виде конденсатор состоит их двух металлических пластин, называемых обкладками, которые разделены слоем диэлектрика.

В простейшем виде конденсатор состоит их двух металлических пластин

При включении конденсатора в цепь с источником тока, под воздействием электрического поля на одной обкладке накапливается положительный заряд, а на другой – отрицательный. Это будет происходить до тех пор, пока на обкладках не накопится максимально возможное количество заряда. Оно определяется важной характеристикой конденсатора — емкостью. Емкость конденсатора определяется количеством заряда, которое он может накопить при заданном напряжении:

Формула емкости.

Формула емкости

C — емкость конденсатора, q — заряд, U — напряжение.

Емкость зависит от таких физических характеристик, как, например, площадь обкладок, расстояние между ними и диэлектрическая проницаемость диэлектрика. Единицей измерения емкости конденсаторов в международной системе единиц (СИ) является Фарад (Ф).

Чем больше ёмкость, тем больший заряд может удерживать конденсатор при заданном напряжении, и тем меньше скорость его зарядки и разрядки.

Основные параметры конденсаторов:

  • Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками. Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.
  • Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.
  • Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита.
  • Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.
  • Полярность. Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

  • Конденсаторы вакуумные (между обкладками находится вакуум).
  • Конденсаторы с газообразным диэлектриком.
  • Конденсаторы с жидким диэлектриком.
  • Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  • Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
  • Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов, прежде всего, большой удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах), или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спечённого порошка. Время наработки на отказ типичного электролитического конденсатора 3000-5000 часов при максимально допустимой температуре, качественные конденсаторы имеют время наработки на отказ не менее 8000 часов при температуре 105°С. Рабочая температура — основной фактор, влияющий на продолжительность срока службы конденсатора. Если нагрев конденсатора незначителен из-за потерь в диэлектрике, обкладках и выводах, (например, при использовании его во времязадающих цепях при небольших токах или в качестве разделительных), можно принять, что интенсивность отказов снижается вдвое при снижении рабочей температуры на каждые 10 °C вплоть до +25 °C. Твердотельные конденсаторы — вместо традиционного жидкого электролита используется специальный токопроводящий органический полимер или полимеризованный органический полупроводник. Время наработки на отказ ~50000 часов при температуре 85°С. ЭПС меньше чем у жидко-электролитических и слабо зависит от температуры. Не взрываются.

Последовательное соединение конденсаторов.

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов уменьшается общая емкость и увеличивается общее напряжение конденсаторов. Общая емкость при последовательном соединении конденсаторов будет вычисляться по формуле:

Последовательное соединение конденсаторов

Общее напряжение будет равняться сумме напряжений всех конденсаторов.

Например: мы имеем три конденсатора по 30 мкФ x 100 В каждый. При их последовательном соединении общий конденсатор будет иметь следующие данные: 10 мкФ x 300 В.

Параллельное соединение конденсаторов.

Параллельное соединение конденсаторов

При параллельном соединении общая емкость конденсаторов складывается, а допустимое напряжение всего набора будет равно напряжению конденсатора, имеющего самое низкое значение допустимого напряжения из всего набора.

Параллельное соединение конденсаторов

Например: мы имеем три конденсатора 30 мкФ x 100 В, соединённые параллельно. Параметры всего набора конденсаторов в этом случае будут следующие: 90 мкФ x 100 В.

Соединение более двух конденсаторов последовательно редко встречается в реальных схемах. Хотя для увеличения общего напряжения такой набор может встретиться в высоковольтных источниках питания. А вот в низковольтных источниках довольно часто встречается параллельное соединение нескольких конденсаторов для сглаживания пульсаций после выпрямления при больших токах потребления.

Обратите внимание, формулы вычисления емкости последовательного и параллельного соединения конденсаторов в точности обратны формулам вычисления сопротивления при последовательном и параллельном соединении резисторов.

Понравилась статья? Не забудь поделиться с друзьями в соц. сетях. А также подписаться на наш канал на YouTube, вступить в группу Вконтакте, в группу на Facebook.

До встречи в следующем уроке. Спасибо за внимание!

Технологии начинаются с простого!

Понравилась статья? Поделитесь ею с друзьями:

Что является основной характеристикой конденсатора

Конденсаторы, как и резисторы, наиболее распространённые компоненты в принципиальных схемах. Их основное назначение – распределённая по электрической схеме фильтрация (сглаживание) пульсаций напряжений питания, а также использование как времязадающих элементов в генераторах и фильтрах.

Происхождение названия от латинского condensatio – накапливать. Это устройство для накопления электрических зарядов и энергии электрического поля W=C*U 2 / 2, где С символ основной характеристики конденсатора – электрической ёмкости (ёмкости). Этой же латинской буквой С принято обозначать конденсатор в электрических схемах.

Исторический образ конденсатора – две параллельно размещённые металлические пластины (обкладки) с диэлектрической прослойкой (показан на рисунке 1.18).

Исходный образ электрического конденсатора

Чем больше поверхности обкладок и меньше расстояние между пластинами, тем выше значение ёмкости конденсатора. Диэлектрик, расположенный между пластинами увеличивает ёмкость. В качестве диэлектрика может использоваться бумага, слюда, полимерная плёнка, керамика и др. Типовое расчётное соотношение для ёмкости конденсатора выглядит так:

где ɛ0≈ 8,85·10 -3 пФ/мм диэлектрическая проницаемость вакуума (диэлектрическая постоянная), ɛ — относительная диэлектрическая проницаемость использованного диэлектрика, S – площадь обкладок [мм 2 ], d – расстояние между обкладками (толщина диэлектрика) [мм] .

Значения относительной диэлектрической проницаемости для некоторых диэлектриков представлены в таблице 1.7.

Таблица 1.7 – Значения относительной диэлектрической проницаемости для некоторых диэлектриков

Диэлектрик

ɛ

На принципиальных электрических схемах конденсаторы обозначаются графемой (показано на рисунке 1.19 слева):

Символические обозначения конденсаторов в принципиальных схемах

Примечание – В некоторых случаях общепринятую в принципиальных схемах графему заменяют более сложной моделью (показано на рисунке 1.19 справа). Такая замена обоснована для конденсаторов с диэлектриком плохого качества.

Резистор Rут на схеме называется сопротивлением утечки и его типовое значение можно найти в документации.

Утечка – это явление перетекания заряда с одной обкладки на другое через не идеальный диэлектрик: если заряженный конденсатор отключить от нагрузок, то через некоторое время он разрядится. Время разряда зависит от качества диэлектрика: чем оно выше, тем дольше происходит саморазряд.

В настоящее время постоянные конденсаторы имеют более сложные конструктивно-технологические решения. При этом конденсаторы различают:

  • по типу диэлектрика: керамические, слюдяные, плёночные, электролитические и др.;
  • по конструктивному решению: конденсаторы для монтажа в отверстия (выводные), для поверхностного монтажа (чип-конденсаторы);
  • по рабочему напряжению, габаритам, температурному коэффициенту ёмкости и др.

Конструктивные разновидности современных конденсаторов, применяемых в электрических цепях с напряжениями до нескольких сотен вольт (низкие напряжения) представлены на рисунке 1.20.

Конструктивные разновидности (постоянных) конденсаторов

Наиболее широкое применение в настоящее время находят керамическиеи электролитические конденсаторы. Они могут монтироваться в отверстия или предназначены для поверхностного монтажа. Типовые сравнительные характеристики конденсаторов представлены в таблице 1.8.

Примечание – Следует иметь в виду, что электролитические конденсаторы при подключению требуют соблюдения полярности. Для этого на корпусе конденсатора рядом с одним из контактов проставлен знак + (анод) или другой отличительный символ.

Таблица 1.8 – Типовые характеристики современных конденсаторов

Типовые характеристики современных конденсаторов

Основное, широко используемое в электротехнике соотношение, связанное с электрической ёмкостью:

где Q – заряд, накопленный в конденсаторе (измеряется в кулонах), U – напряжение, до которого заряжен конденсатор.

На практике применяют постоянные, переменные и подстроечные конденсаторы (представлены на рисунке 1.21).

Типовые конструкции постоянных, переменных и подстроечных конденсаторов

Постоянными принято называть конденсаторы, основной параметр которых – электрическая ёмкость, должен поддерживаться неизменным. Любые отклонения от расчётных значений – нежелательная погрешность.

Переменный и подстроечный конденсаторы имеют конструктивные особенности, позволяющие изменять ёмкость с помощью инструмента или вручную.

Постоянные конденсаторы

Основной параметр постоянного конденсатора – номинальная ёмкость, может меняться во время эксплуатации, как и у резистора, под воздействием различных факторов. Разница заключается в том, что скрупулёзно следить за такими изменениями обычно не требуется: требования к точности конденсаторов не высоки.

Так, например, используемые в качестве фильтров питания электролитические и керамические конденсаторы могут иметь допуск номинала ± 30% и более.

С максимальной точностью ± 1% изготавливаются некоторые керамические конденсаторы, ёмкость которых ограничена значением 100 нФ. Они используются в качестве времязадающих компонентов при создании активных электрических фильтров или генераторов. Другие важные их отличия – высокая температурная стабильность и большая цена.

Следует иметь в виду, что ёмкость электролитических конденсаторов может существенно меняться с изменением температуры и с течением времени они сильно деградируют (высыхают).

Конденсаторы выпускаются в соответствии с рядом Е24, но часто имеют более ограниченный набор номиналов, который задаётся в технических описаниях.

Цветовая маркировка конденсаторов похожа на аналогичную для резисторов, однако в отличие от чип-резисторов, чип-конденсаторы обычно не имеют маркировки!

Типовые расчётные соотношения

  1. Выражение для накопленного в конденсаторе заряда
  1. Последовательное соединение конденсаторов:

Последовательное соединение конденсаторов

  1. Параллельное соединение конденсаторов:

Параллельное соединение конденсаторов

  1. Переходный процесс в RC-цепочке:

Переходный процесс в RC-цепочке

Переменные и подстроечные конденсаторы

Переменные (регулирующие) конденсаторы предназначены для интенсивной регулировки так, как это делалось при настройке частоты вещания в старых радиоприёмниках. Это конденсаторы с воздушным диэлектриком сегодня используются редко.

Подстроечный конденсатор это переменный конденсатор малой ёмкости, который обычно используется для точной настройки режимов работы электрических схем. Обычно, подстроечный конденсатор используется однократно – в ходе процедуры настройки, или изредка.

После манипуляций настройки регулировочный винт контрится (закрашивается), чтобы во время дальнейшей эксплуатации изделия его положение не сдвинулось от случайных механических воздействий (например, вибраций). Количество подстроек у таких конденсаторов лимитировано несколькими десятками полных поворотов.

Переменные и подстроечные конденсаторы в современной электронике применяются редко. Широко их используют только в радиотехнике. Внешний вид таких конденсаторов представлен на рисунке 1.22.

Переменные и подстроечные конденсаторы

Средства измерений ёмкости конденсаторов

Colibri. Измеритель сопротивления, ёмкости, индуктивности.

Диапазоны основных режимов измерений мультиметра Colibri представлены в таблице 1.9.

Таблица 1.9 – Диапазоны основных режимов измерений мультиметра Colibri

Параметры

Значение

Погрешность измерения

Характеристики конденсаторов

Ранее мы уже рассмотрели принцип работы и маркировку многих типов конденсаторов. Однако настоящий электронщик должен знать следующие характеристики конденсаторов: допустимое напряжение, классы точности, температурный коэффициент емкости и тангенс угла потерь. Понимание указанных характеристик позволяет сделать выбор и применить лучший из имеющихся накопителей, что благоприятно скажется в целом на работе электронного устройства.

Основные характеристики конденсаторов

Допустимое напряжение является очень важным параметром любого конденсатора и его нельзя превышать, иначе произойдет пробой диэлектрика и накопитель придет в непригодность. На корпусе указывается всегда величина максимального допустимого напряжения. Поэтому начинающих радиолюбителей такое обозначение вводит в заблуждения, поскольку в розетке напряжение 230 В, то казалось бы, что напряжения накопителя 300 В вполне достаточно. Однако это не так. Так как 230 В – это действующее напряжение, а диэлектрик может пробиться от мгновенного амплитудного значения, которое в 1,41 раза больше действующего и равно 230×1,41 = 324 В плюс допуск отклонения 10 % от номинального значения в сторону увеличения, нормированный ГОСТом, и того получим 324×0,1+324 = 356 В. Поэтому допустимое напряжение должно быть не ниже 360 В.

Характеристики конденсаторов

Стандартные значения емкости конденсаторов

Если взять любой радиоэлектронный прибор, например, резистор, диод, транзистор, стабилитрон и снять его характеристики либо измерить параметры высокоточным измерительным прибором, то они будут иметь некоторые отклонения от заявленных номинальных значений. Такое отклонение от указанных параметров вызвано технологическим процессом и нормируется производителем. Дело в том, что на изготовление любого устройства или его отдельного компонента влияет много факторов, которые невозможно учесть и скомпенсировать. Даже лист бумаги, формата А4, имеет некоторые отклонения от заданных размеров, но тем не менее это никак не сказывается на их применении.

Аналогично обстоят дела и с емкостью. Если измерить ее в нескольких накопителей одинакового номинала, то можно заметить небольшую разницу. Эта разница строго нормирована и называется допустимым отклонением емкости от номинального значения. Она измеряется в процентах, значения которых соответствуют классам точности.

Классы точности конденсаторов

В зависимости от класса точности и допустимого отклонения производятся стандартные значения емкости, то есть стандартные номиналы конденсаторов. Емкость в приведенной ниже таблице исчисляется пикофарадоми. Любое значение из таблицы может быть умножено на 0,1 или 1 или 10 и т.д.

Номиналы конденсаторов

Температурный коэффициент емкости

Протекание электрического тока через любой радиоэлектронный элемент вызывает его нагрев, ввиду неизбежного наличия сопротивления. Чем больше ток и выше сопротивление, тем интенсивнее нагревается прибор. Такое явление в большинстве случаев является вредным и может привести к изменению параметров схемы, а соответственно и нарушить режим работы всего устройства. Поэтому нагрев радиоэлектронных элементов всегда учитывается при проектировании изделия. Характеристики конденсаторов также склонны изменятся с изменением температуры и с этим обязательно нужно считаться. Для этого введен температурный коэффициент емкости, сокращенно ТКЕ.

ТКЕ показывает, насколько отклоняется емкость конденсатора от номинального значения с ростом температуры. Номинальное значение емкости накопителя приводится для температуры окружающей среды +20 С.

Рост температуры может вызвать как рост емкости, так и ее уменьшение. В зависимости от этого различают конденсаторы с положительным и отрицательным температурным коэффициентом емкости.

Следует знать, чем меньше значение ТКЕ, тем более стабильными характеристиками обладает конденсатор. Особое внимание уделяют ТКЕ разработчик измерительного оборудования высокого класса точности, где критичны значительные отклонения характеристик любого радиоэлектронного элемента.

Тангенс угла потерь

Потери, неизбежно возникающие при работе конденсатора, главным образом определяются свойствами диэлектрика, расположенного между обкладками накопителя, и характеризуются тангенсом угла потерь tg δ. Производители стремятся снизить значение угла tg δ и за счет этого улучшить характеристики конденсаторов. Поэтому наибольшее применение получила специальная керамика, обладающая минимальным тангенсом угла потерь. Обратной величиной тангенса угла потерь конденсатора является добротность, равная QC=1/tgδ. Конденсаторы высокого качества обладают добротностью свыше тысячи единиц.

Конденсатор: что это такое и для чего он нужен

Конденсатор – это устройство, способное накапливать электрический заряд.

Такую же функцию выполняет и аккумуляторная батарея, но в отличие от неё конденсатор может моментально отдать весь накопленный заряд.

Количество заряда, которое способен накопить конденсатор, называют «емкостью». Эта величина измеряется в фарадах.

Принцип работы конденсаторов

При подсоединении цепи к источнику электрического тока через конденсатор начинает течь электрический ток. В начале прохождения тока через конденсатор его сила имеет максимальное значение, а напряжение – минимальное. По мере накопления устройством заряда сила тока падает до полного исчезновения, а напряжение увеличивается.

В процессе накопления заряда электроны скапливаются на одной пластинке, а положительные ионы – на другой. Между пластинами заряд не перетекает из-за присутствия диэлектрика. Так устройство накапливает заряд. Это явление называется накоплением электрических зарядов, а конденсатор –накопителем электрического поля.

Устройство конденсаторов

Конструкции современных конденсаторов отличаются разнообразием, но можно выделить несколько типичных вариантов:

Пакетная конструкция

Используется в стеклоэмалевых, керамических и стеклокерамических конденсаторах. Пакеты образованы чередующимися слоями обкладок и диэлектрика. Обкладки могут изготавливаться из фольги, а могут представлять собой слои на диэлектрических пластинах – напыленный или нанесенный вжиганием.

Каждый пакетный конденсатор имеет верхнюю и нижнюю обкладки, имеющие контакты с торцов пакета. Выводы изготавливаются из проволоки или ленточных полосок. Пакет опрессовывается, герметизируется, покрывается защитной эмалью.

Трубчатая конструкция

Такую конструкцию могут иметь высокочастотные конденсаторы. Они представляют собой керамическую трубку с толщиной стенки 0,25 мм. На ее наружную и внутреннюю стороны способом вжигания наносится серебряный проводящий слой. Снаружи деталь обрабатывается изоляционным веществом. Внутреннюю обкладку выводят на наружный слой для присоединения к ней гибкого вывода.

Дисковая конструкция

Эта конструкция, как и трубчатая, применяется при изготовлении высокочастотных конденсаторов.

Диэлектриком в дисковых конденсаторах является керамический диск. На него вжигают серебряные обкладки, к которым подсоединены гибкие выводы.

Литая секционированная конструкция

Применяется в монолитных многослойных керамических конденсаторах, используемых в современной аппаратуре, в том числе с интегральными микросхемами. Деталь, имеющая 2 паза, изготавливается литьем керамики. Пазы заполняют серебряной пастой, которую закрепляют методом вживания. К серебряным вставкам припаивают гибкие выводы.

Рулонная конструкция

Характерна для бумажных пленочных низкочастотных конденсаторов с большой емкостью. Бумажная лента и металлическая фольга сворачиваются в рулон. В металлобумажных конденсаторах на бумажную ленту наносят металлический слой толщиной до 1 мкм.

Где используются конденсаторы

Конденсаторы применяются практически во всех современных устройствах: сабвуферах, электродвигателях, автомобилях, насосах, электроинструменте, кондиционерах, холодильниках, мобильных телефонах и т.п.

В зависимости от выполняемых функций их разделяют на общего назначения и узкоспециальные.

К конденсаторам общего назначения относятся низковольтные накопители, которые используются в большинстве видов электроаппаратуры.

К узкоспециализированным относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические ипусковые конденсаторы.

Функции, выполняемые конденсаторами:

  • фильтрация высокочастотных помех;
  • сведение к минимуму пульсаций;
  • разделение сигнала на постоянные и переменные компоненты;
  • накопление энергии;
  • создание резонанса с катушкой индуктивности, что позволяет усилить сигнал.

Поведение конденсатора в цепях постоянного и переменного тока

В цепях постоянного тока заряженный конденсатор образует разрыв, мешающий протеканию тока. Если напряжение приложить к обкладкам разряженной детали, то ток потечет. При этом конденсатор будет заряжаться, сила тока падать, напряжение на обкладках повышаться. При достижении равенства напряжения на обкладках и источника электропитания течение тока прекращается.

При постоянном напряжении конденсатор удерживает заряд при включенном питании. После выключения заряд сбрасывается через нагрузки, присутствующие в цепи.

Переменный ток заряженный конденсатор тоже не пропускает. Но за один период синусоиды дважды происходит зарядка и разрядка накопителя, поэтому ток получает возможность протекать через конденсаторв периодего разрядки.

Виды и классификация конденсаторов

Конденсаторы различных типов приспособлены к разным условиям работы, направлены на выполнение определенных задач и обладают различными побочными эффектами.

Основной признак, по которому классифицируют конденсатор, – это вид диэлектрика. Именно диэлектрический материал определяет многие характеристики конденсатора.

Электролитические конденсаторы

В электролитических конденсаторах анодом служит металлическая пластина, диэлектриком – оксидная пленка, а катодом – твердый, жидкий или гелеобразный электролит. Наличие гелеобразного электролита делает устройство полярным, то есть ток через него может протекать только в одном направлении. Представители этого семейства – алюминиевые и танталовые конденсаторы.

Алюминиевые электролитические конденсаторы имеют емкость от 0,1 до нескольких тысяч мкФ. Обычно они применяются на звуковых частотах. Электрохимическая ячейка плотно упакована, что обеспечивает большую эффективную индуктивность, которая не позволяет использовать алюминиевые накопители на сверхвысоких частотах.

В танталовых конденсаторах катод изготавливается из диоксида марганца. Сочетание значительной площади поверхности анода и диэлектрических характеристик оксида тантала обеспечивает высокую удельную емкость (емкость в единице объема или массы диэлектрика). Это значит, что танталовые конденсаторы гораздо компактнее алюминиевых такой же емкости.

У танталовых конденсаторов есть свои недостатки. Устройства ранних поколений грешат отказами, возможны возгорания. Они могут произойти при подаче слишком высокого пускового тока, который меняет структурное состояние диэлектрика. Дело в том, что оксид тантала в аморфном состоянии является хорошим диэлектриком. При подаче большого пускового тока оксид тантала из аморфного состояния переходит в кристаллическое и превращается в проводник. Кристаллический оксид тантала еще больше увеличивает силу тока, что и приводит к возгоранию. Современные танталовые конденсаторы производятся по передовым технологиям и практически не дают отказов, не вздуваются, не возгораются.

Пленочные и металлопленочные конденсаторы

Пленочные конденсаторы имеют диэлектрический слой из полимерной пленки, расположенный между слоями металлофольги.

Такие устройства имеют небольшую емкость (от 100 пФ до нескольких мкФ), но могут работать при высоких напряжениях – до 1000 В.

Существует целое семейство пленочных конденсаторов, но для всех видов характерны небольшие емкость и индуктивность. Благодаря малой индуктивности, эти приборы используются в высокочастотных схемах.

Основные различия между конденсаторами с разными типами пленок:

  • Конденсаторы с диэлектриком в виде полипропиленовой пленки применяются в цепях, в которых предъявляются высокие требования к температурной и частотной стабильности. Они подходят для систем питания, подавления ЭМП.
  • Конденсаторы с диэлектриком в виде полиэстеровой пленки обладают низкой стоимостью и способны выдерживать высокие температуры при пайке. Частотная стабильность, по сравнению с полипропиленовыми видами, ниже.
  • Конденсаторы с диэлектриком из поликарбонатной и полистиреновой пленки, которые использовались в старых схемах, сегодня уже неактуальны.

Керамические конденсаторы

В керамических конденсаторах в качестве диэлектрика используются керамические пластины.

Керамические конденсаторы отличаются небольшой емкостью – от одного пФ до нескольких десятков мкФ.

Керамика имеет пьезоэлектрический эффект (способность диэлектрика поляризоваться под воздействием механических усилий), поэтому некоторые виды этих конденсаторов обладают микрофонным эффектом. Это нежелательное явление, при котором часть электроцепи воспринимает вибрации, как микрофон, что становится причиной помех.

Бумажные и металлобумажные конденсаторы

В качестве диэлектрика в этих конденсаторах используется бумага, часто промасленная. Устройства с промасленной бумагой отличаются большими размерами. Модели с непромасленной бумагой более компактны, но они имеют существенный недостаток – увеличивают энергопотери под воздействием влаги даже в герметичной упаковке. В последнее время эти детали используются редко.

Основные параметры конденсаторов

Емкость

Этот показатель характеризует способность конденсатора накапливать электрический заряд. Емкость тем больше, чем больше площадь проводниковых обкладок и чем меньше толщина диэлектрического слоя. Также эта характеристика зависит от материала диэлектрика. На приборе указывается номинальная емкость. Реальная емкость, в зависимости от эксплуатационных условий, может отличаться от номинальной в значительных пределах. Стандартные варианты номинальной емкости – от единиц пикофарад до нескольких тысяч микрофарад. Некоторые модели могут иметь емкость в несколько десятков фарад.

Классические конденсаторы имеют положительную емкость, то есть чем больше приложенное напряжение, тем больше накопленный заряд. Но сегодня в стадии разработки находятся устройства с уникальными свойствами, которые ученые называют «антиконденсаторами». Они обладают отрицательной емкостью, то есть с ростом напряжения их заряд уменьшается, и наоборот. Внедрение таких антиконденсаторов в электронную промышленность позволит ускорить работу компьютеров и снизить риск их перегрева.

Что будет, если поставить накопитель большей/меньшей емкости, по сравнению с требуемой? Если речь идет о сглаживании пульсаций напряжения в блоках питания, то установка конденсатора с емкостью, превышающей нужную величину (в разумных пределах – до 90% от номинала), в большинстве случаев улучшает ситуацию. Монтаж конденсатора с меньшей емкостью может ухудшить работу схемы. В других случаях возможность установки детали с параметрами, отличающимися от заданных, определяют конкретно для каждого случая.

Удельная емкость

Отношение номинальной емкости к объему (или массе) диэлектрика. Чем тоньше диэлектрический слой, тем выше удельная емкость, но тем меньше его напряжение пробоя.

Плотность энергии

Это понятие относится к электролитическим конденсаторам. Максимальная плотность характерна для больших конденсаторов, в которых масса корпуса значительно ниже, чем масса обкладок и электролита.

Номинальное напряжение

Его значение отражается на корпусе и характеризует напряжение, при котором конденсатор работает в течение срока службы с колебанием параметров в заданных пределах. Эксплуатационное напряжение не должно превышать номинальное значение. Для многих конденсаторов с повышением температуры номинальное напряжение снижается.

Полярность

К полярным относятся электролитические конденсаторы, имеющие положительный и отрицательный заряды. На устройствах отечественного производства обычно ставился знак «+» у положительного электрода. На импортных приборах обозначается отрицательный электрод, возле которого стоит знак «-». Такие конденсаторы могут выполнять свои функции только при корректном подключении полярности напряжения. Этот факт объясняется химическими особенностями реакции электролита с диэлектриком.

Что будет, если перепутать полярность конденсатора? Обычно в этом случае приборы выходят из строя. Это происходит из-за химического разрушения диэлектрика, которое вызывает рост силы тока, вскипание электролита и, как следствие, вздутие корпуса и вероятный взрыв.

К группе неполярных конденсаторов относится большинство накопителей заряда. Эти детали обеспечивают корректную работу при любом порядке подключения выводов в цепь.

Паразитные параметры конденсаторов

Конденсаторы, помимо основных характеристик, имеют так называемые «паразитные параметры», которые искажают рабочие свойства колебательного контура. Их необходимо учитывать при проектировании схемы.

К таким параметрам относятся собственное сопротивление и индуктивность, которые разделяются на следующие составляющие:

  • Электрическое сопротивление изоляции (r), которое определяется по формуле: r = U/Iут, в которой U – напряжение источника питания, Iут – ток утечки.
  • Эквивалентное последовательное сопротивление (ЭПС, англ. ESR). Эта величина зависит от электрического сопротивления материала обкладок, выводов, контактов между ними, потерями в диэлектрическом слое. ЭПС возрастает с ростом частоты тока, подаваемого на накопитель. В большинстве случаев эта характеристика не принципиальна. Исключение составляют электролитические накопители, устанавливаемые в фильтрах импульсных блоков питания.
  • Эквивалентная последовательная индуктивность – L. На низких частотах этот параметр, обусловленный собственной индуктивностью обкладок и выводов, не учитывается.

К паразитным параметрам также относится Vloss – незначительная величина, выражаемая в процентах, которая показывает, насколько падает напряжение сразу после прекращения зарядки конденсатора.

Обозначение конденсаторов на схеме

На чертежах конденсатор с постоянной емкостью обозначают двумя параллельными черточками — обкладками. Их подписывают буквой «C». Рядом с буквой ставят порядковый номер элемента на схеме и значение емкости в пФ или мкФ.

В конденсаторах переменной емкости параллельные черточки перечеркиваются диагональной чертой со стрелкой. Подстроечные модели обозначаются двумя параллельными линиями, перечеркнутыми диагональной чертой с черточкой на конце. На обозначении полярных конденсаторов указывается положительно заряженная обкладка.

Обозначение по ГОСТ 2.728-74 Описание
Конденсатор постоянной ёмкости
Поляризованный (полярный) конденсатор
Подстроечный конденсатор переменной ёмкости
Варикап

Особенности соединения нескольких конденсаторов в цепи

Соединение нескольких конденсаторов между собой может быть последовательным или параллельным.

Последовательное

Последовательное соединение позволяет подавать на обкладки большее напряжение, чем на отдельно стоящую деталь. Напряжение распределяется в зависимости от емкости каждого накопителя. Если емкости деталей равны, то напряжение распределяется поровну.

Получаемая емкость в такой цепи находится по формуле:

Если провести вычисления, то станет понятно, что увеличение напряжения в цепи достигается существенным падением емкости. Например, если в цепь подсоединить последовательно два конденсатора емкостью 10 мкФ, то общая емкость будет равна всего 5 мкФ.

Параллельное

Это наиболее распространенный на практике способ, позволяющий увеличить общую емкость в схеме. Параллельное соединение позволяет создать один большой конденсатор с суммарной площадью проводящих пластин. Общая емкость системы представляет собой сумму емкостей соединенных деталей.

Напряжение на всех элементах будет одинаковым.

Маркировка конденсаторов

В маркировке конденсатора, независимо от его типа, присутствуют два обязательных параметра – емкость и номинальное напряжение. Наиболее распространена цифровая маркировка, указывающая величину сопротивления. В ней используется три или четыре цифры.

Кратко суть трехфциферной маркировки: первые две цифры, находящиеся слева, указывают значение емкости в пикофарадах. Самая правая цифра показывает, сколько нулей надо прибавить к стоящим слева цифрам. Результат получается в пикофарадах. Пример: 154 = 15х104 пФ. На конденсаторах зарубежного производства пФ обозначаются как mmf.

В кодовом обозначении с четырьмя цифрами емкость в пикофарадах обозначают первые три цифры, а четвертая указывает на количество нулей, которые требуется добавить. Например: 2353=235х103 пФ.

Для обозначения емкости также может применяться буквенно-цифровая маркировка, содержащая букву R, которая указывает место установки десятичной запятой. Например, 0R8=0,8 пФ.

На корпусе значение напряжения указывается числом, после которого ставятся буквы: V, WV (что означает «рабочее напряжение»). Если указание на допустимое напряжение отсутствует, то конденсатор может использоваться только в низковольтных цепях.

Помимо емкости и напряжения, на корпусе могут указываться и другие характеристики детали:

  • Материал диэлектрика. Б – бумага, С – слюда, К – керамика.
  • Степень защиты от внешних воздействий. Г – герметичное исполнение, О – опрессованный корпус.
  • Конструкция. М – монолит, Б – бочонок, Д – диск, С – секционный вариант.
  • Режим по току. И – импульсный, У – универсальный, Ч – только постоянный ток, П – переменный/постоянный.

Как проверить работоспособность конденсатора

Для проверки конденсатора на работоспособность используют мультиметр. Прежде чем проверить накопитель, необходимо определить, какой именно прибор находится в схеме – полярный (электролитический) или неполярный.

Проверка полярного конденсатора

При проверке полярного конденсатора необходимо соблюдать правильную полярность подключения щупов: плюсовой должен быть прижат к плюсовой ножке, минусовой – к минусу. Если вы перепутаете полярность, конденсатор выйдет из строя.

После выпайки детали ее кладут на свободное пространство. Мультиметр включают в режим измерения сопротивления («прозвонки»).

Щупами дотрагиваются до выводов прибора с соблюдением полярности. Правильная ситуация, когда на дисплее появляется первое значение, которое начинает постепенно расти. Максимальное значение, которое должно быть достигнуто для исправного устройства, – 1. Если вы только прикоснулись щупами к выводам, а на экране появилась сразу цифра 1, значит, прибор неисправен. Появление на экране «0» означает, что внутри детали произошло короткое замыкание.

Проверка неполярного конденсатора

В этом случае проверка предельно простая. Диапазон измерений выставляют на отметку 2 МОм. Щупы присоединяют к выводам конденсатора в любом порядке. Полученное значение должно превышать двойку. Если на дисплее высвечивается значение менее 2 МОм, то деталь неисправна.

Как зарядить и разрядить конденсатор

Для зарядки накопителя его подсоединяют к источнику постоянного тока. Зарядка прекращается, когда напряжение источника питания сравнивается по величине с напряжением на обкладках.

Разрядка конденсатора может понадобиться для безопасной разборки бытовых приборов и электронных устройств. Накопители электронных устройств разряжают с помощью обычной диэлектрической отвертки. Для разрядки крупных накопителей, которые устанавливаются в бытовых приборах, необходимо собрать специальное разрядное устройство.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *