Что определяет максимальную амплитуду выходного напряжения усилителя
Перейти к содержимому

Что определяет максимальную амплитуду выходного напряжения усилителя

  • автор:

ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ

Термин «операционный усилитель» ранее применялся для усилителей постоянного тока с большим коэффициентом усиления и малым дрейфом, выполненных на электронных лампах и позднее на дискретных транзисторах. Такие усилители служили основой аналоговых ЭВМ, весьма эффективных для решения операторных уравнений высоких порядков. В настоящее время операционным усилителем (ОУ) называют интегральную микросхему, имеющую дифференциальный вход и выполняющую функцию , где К — собственный коэффициент усиления. Схемотехнически они обычно выполняются по схеме прямого усиления с дифференциальными входами, двухтактным выходом, и рассчитаны на двуполярное симметричное питание (хотя используется и однополярное).
Кроме двух входов, выхода и выводов питания, ОУ может также иметь выводы для балансировки, коррекции, программирования (задания определенных параметров величиной управляющего тока).
В идеальном случае ОУ должен иметь бесконечный коэффициент усиления по напряжению, бесконечно большое входное и бесконечно малое выходное сопротивления, бесконечно большую амплитуду выходного сигнала, бесконечно большой диапазон усиливаемых частот. Параметры ОУ не должны зависеть от внешних факторов, напряжения питания и температуры. При соблюдении этих условий передаточная характеристика ОУ, охваченного отрицательной обратной связью (ООС) точно соответствует передаточной характеристике цепи ООС и не зависит от параметров самого усилителя. Именно на этом постулате основывается все бесконечное разнообразие схемных решений по применению ОУ.
Реальные ОУ, естественно, имеют характеристики отличные от идеальных. Поскольку схемотехнически и технологически спроектировать ОУ с хорошим приближением к идеальным всех параметров одновременно невозможно, проектировщики вынуждены идти на компромисс, отдавая предпочтение в каждом конкретном случае только одному — двум ключевым параметрам. Отсюда возникает довольно четкая классификация выпускаемых ОУ. В зависимости от поставленной задачи, оптимизированы могут быть следующие параметры:

Для ОУ с малыми входными токами — высоким входным сопротивлением.

Входной ток смещения (Input Bias Current), Iсм — это втекающий/ вытекающий по входам ток. Величину тока смещения рассчитывают как полусумму входных токов. Также, как правило, оговаривается допустимая разность между этими токами — ток сдвига (Input Offset Current); Входное сопротивление (Input Resistance), Rвх — динамическое входное сопротивление для дифференциального сигнала без ООС. Величину этого входного сопротивления можно указать лишь весьма приблизительно, поэтому для расчетов, в основном, используется параметр входного тока.

*ОУ, относящиеся к этому классу, большей частью имеют на входе полевые транзисторы, которые обладают значительной зависимостью обратных токов от температуры. Отсюда, входной ток таких ОУ может увеличиваться на порядок и более при изменении температуры от 25°C до Tmax.

Напряжение смещения (Input Offset Voltage), Uсм.— дифференциальное (между входами) напряжение, необходимое для того, чтобы выходное напряжение ОУ стало равно нулю. Появление напряжения смещения связано с технологическими отклонениями при изготовлении ОУ, в результате чего в схеме возникает некоторая разбалансировка. Последняя приводит к тому, что при нулевом входном сигнале ОУ и соединении между собой входов, из-за большого коэффициента усиления ОУ, схема входит в насыщение, и напряжение на выходе становится близким к напряжению питания;
Температурный дрейф напряжения смещения (Offset Voltage Drift), измеряется в мкВ/oС. Показывает зависимость напряжения смещения от температуры;
Временной дрейф напряжения смещения, характеризующийся коэффициентом долговременной стабильности (Long Term Stability), измеряемый в мкВ/месяц;
Коэффициент усиления по напряжению (Open-Loop Gain), K — динамический параметр-отношение приращения выходного напряжения
к вызвавшему его приращению дифференциального входного напряжения в схеме без обратной связи. Широко используется также статический коэффициент усиления при большом сигнале (Large-Signal Voltage Gain) — отношение максимального значения выходного напряжения к вызывающему его значению входного напряжения. Измеряется в ненормированных единицах, децибелах (дБ) или В/мВ;
Коэффициент ослабления синфазного сигнала (Common Mode Rejection Ratio-CMRR), Косс — отношение приращений синфазного и дифференциального входных напряжений, вызывающих одинаковое приращение выходного напряжения. Говоря проще, ОУ должен усиливать только разность входных напряжений, независимо от их абсолютной величины. Насколько это не так и показывает CMRR. Измеряется в децибелах (дБ);
Коэффициент влияния нестабильности источников питания (Power Supply Ripple Rejection — PSRR), Книп — отношение изменения напряжения питания к вызванному им изменению напряжения смещения. Измеряется в децибелах (дБ).

Для быстродействующих ОУ(с ОС по току, с ОС по напряжению)

Граничная частота усиления, Fгр — значение частоты, при котором коэффициент усиления ОУ по напряжению уменьшается на 3 дБ относительно значения на средних частотах. Используется также частота единичного усиления (Unity Gain Bandwidth) — значение частоты, соответствующей падению коэффициента усиления ОУ до единицы;
Максимальная скорость нарастания выходного напряжения (Slew Rate), Uвых определяется при подаче на вход ОУ прямоугольного импульса как отношение приращения выходного напряжения к времени, за которое произошло это приращение. Измеряется в В/мкс. Uвых зависит от многих факторов — коэффициента усиления усилителя с ООС, параметров цепей
частотной коррекции, направления изменения выходного напряжения. Наименьшая скорость нарастания выходного напряжения получается при единичном усилении, поэтому это значение и приводят в справочных данных. С конечным значением скорости нарастания связано также убывание максимальной амплитуды выходного напряжения усилителя с ростом частоты входного сигнала;
Время установления (Settling Time), tуст — время, необходимое для достижения выходным сигналом расчетного значения с точностью до 0,1% (или другой, оговоренной).
Ток потребления (Total Quiescent Current) — собственный ток потребления. Параметр вполне очевидный, однако, нужно обращать внимание на то, что в случае многоканального усилителя, ток может быть указан как для всей микросхемы в целом, так и в расчете на каждый усилитель.

*Следует отметить, что критерии достижения минимального энергопотребления противоречат критериям достижения максимального быстродействия, поэтому микромощные ОУ, как правило, имеют более, чем скромные скоростные параметры и наоборот. Необходимость минимизации энергопотребления объясняется требованиями к устройствам с батарейным питанием. В связи с этим, подавляющее большинство микромощных ОУ имеют к тому же пониженное напряжение питания. Плюс к этому - возможность работы от однополярного источника питания.
При небольшом напряжении питания даже одного вольта, как разницы между напряжением питания и достижимым напряжением на выходе, представляется слишком расточительной. Поэтому большинство современных ОУ этого класса обладают возможностью достижения выходным сигналом полного размаха выходного напряжения в пределах напряжения питания. Такая способность называется R/R (Rail-to-Rail) выходом. Аналогично существуют и R/R входы.


Шумовые параметры ОУ в значительной степени определяют минимальный допустимый уровень входных сигналов и, в общем случае, шумы присущи всем ОУ во всех классах. В данном случае мы рассматриваем усилители для аудио применений и дополнительно приводим другие параметры, влияющие на качество передачи звукового сигнала.

— В документации на ОУ обычно указывают приведенное к входу среднеквадратичное напряжение шумов enoise (Input Voltage Noise) в определенном диапазоне частот (как правило, 1000 Гц) и при определенном значении сопротивления источника сигнала. Измеряется данный параметр в нВ/√ Гц. — Аналогичный смысл имеет и приведенный к входу среднеквадратичный ток шумов.
Коэффициент нелинейных искажений (Total Harmonic Distraction — THD) — показывает суммарное количество добавленных к входному сигналу гармоник, вызванных нелинейностью внутренних схем ОУ. Измеряется в процентах.

* Отражение объективных характеристик ОУ не дает, к сожалению, полного впечатления об его . При прочих равных условиях, одни усилители будут звучать субъективно лучше, другие хуже. Видимо, это находится за гранью измеряемых и описываемых параметров, хотя закономерности здесь, конечно, очевидны. По опыту многих любителей High-End, непревзойденным с точки зрения музыкальности является OP275 фирмы Analog Devices.


Такие усилители разрабатываются для непосредственного управления нагрузкой, и львиная их доля предназначена для работы в качестве УНЧ.

Выходная мощность (Power Output), Рвых (Вт) — долговременная мощность, которую усилитель способен передавать в нагрузку без ухудшения оговоренных параметров. Обычно оговаривается допустимая величина нелинейных искажений и сопротивление нагрузки;
Выходной ток (Output Current), Iвых (А) — максимальный выходной ток, передаваемый в нагрузку. Часто приводится значение максимального импульсного тока, который может выдаваться в нагрузку лишь кратковременно;
Выходное сопротивление (Output Resistance), Rвых — динамическое сопротивление без ООС. При использовании ООС, выходное сопротивление, в зависимости от типа связи, становится пренебрежимо малым или большим, в связи с чем, большее значение имеет максимальный выходной ток или минимально допустимое сопротивление нагрузки (Ом);
— Иногда специально указывается ток при коротком замыкании выхода (большинство ОУ имеют схему ограничения тока короткого замыкания).


В ряде случаев к параметрам ОУ не предъявляется особых требований. Тогда на первое место выходят экономические соображения. Как известно, цены на микросхемы в значительной степени зависят от массовости их выпуска. Применяя стандартные микросхемы, можно быть уверенным в их дешевизне и доступности.
Мы рекомендуем следующие типы ОУ общего назначения: одиночные — uA741, сдвоенные — LM358 и счетверенные — LM324. Эти усилители обладают сбалансированными параметрами и чрезвычайной распространенностью. В каждом из вышерассмотренных классов ОУ тоже есть определенные с экономической точки зрения. Так, в классе прецизионных ОУ, самым доступным является OP07; среди ОУ с высоким входным сопротивлением — серия TL071/2/4 — TL081/2/4; из микромощных можно рекомендовать TL061/2/4; из аудио — NE5532/34; недорогими быстродействующими (до определенной степени) можно считать OP27/37 или LF357.

В заключение стоит отметить, что столь краткий обзор не охватывает огромного числа интересных разновидностей ОУ, например программируемые ОУ, ОУ со стабилизацией прерыванием и других. Также, не является исчерпывающим и перечень рассмотренных параметров. Тем не менее, следует также обратить особое внимание на предельно допустимые параметры, некоторые из которых уже рассматривались выше. Перечислим оставшиеся:

1. Максимальное напряжение питания.
2. Максимальная рассеиваемая мощность.
3. Максимально допустимое входное напряжение.
4. Длительность короткого замыкания выхода.
5. Температура выводов при пайке.

Рабочий температурный диапазон не является в полном смысле параметром ОУ, но, как и для любых других микросхем, ограничивает область применения конкретно взятого типа.

Основные параметры усилителей низкой частоты и акустики. Что нужно знать, чтобы не попасться на удочку маркетологов

Благодаря торговым сетям и интернет магазинам разнообразие предлагаемой к продаже аудиоаппаратуры зашкаливает за все разумные пределы. Каким образом выбрать аппарат, удовлетворяющий вашим потребностям к качеству, существенно не переплатив?

Если вы не аудиофил и подбор аппаратуры не является для вас смыслом жизни, то самый простой путь — уверенно ориентироваться в технических характеристиках звукоусилительной аппаратуры и научиться извлекать полезную информацию между строк паспортов и инструкций, критически относясь к щедрым обещаниям. Если вы не ощущаете разницы между dB и dBm, номинальную мощность не отличаете от PMPO и желаете наконец узнать, что такое THD, также сможете найти интересное под катом.

Краткое содержание статьи

Я надеюсь что материалы данной статьи будут полезны для понимания следующей, которая имеет намного более сложную тему — «Перекрёстные искажения и обратная связь, как один из их источников».

Коэффициент усиления. Зачем нам логарифмы и что такое децибелы?

Одним из основных параметров усилителя является коэффициент усиления — отношение выходного параметра усилителя к входному. В зависимости от функционального назначения усилителя различают коэффициенты усиления по напряжению, току или мощности:

Коэффициент усиления по напряжению

Коэффициент усиления по току

Коэффициент усиления по мощности

Коэффициент усиления УНЧ может быть очень большим, ещё большими значениями выражаются усиление операционных усилителей и радиотрактов различной аппаратуры. Цифрами с большим количеством нулей не слишком удобно оперировать, ещё сложнее отображать на графике различного рода зависимости имеющие величины, отличающиеся между собой в тысячу и более раз. Удобный выход из положения — представление величин в логарифмическом масштабе. В акустике это вдвойне удобно, поскольку ухо имеет чувствительность близкую к логарифмической.

Поэтому коэффициент усиления часто выражают в логарифмических единицах — децибелах (русское обозначение: дБ; международное: dB)

Изначально дБ использовался для оценки отношения мощностей, поэтому величина, выраженная в дБ, предполагает логарифм отношения двух мощностей, а коэффициент усиления по мощности вычисляется по формуле:

Немного другим образом обстоит дело с «неэнергетическими» величинами. Для примера возьмём ток и выразим через него мощность, воспользовавшись законом Ома:

тогда величина выраженная в децибелах через ток будет равна следующему выражению:

Аналогично и для напряжения. В результате получаем следующие формулы для вычисления коэффициентов усиления:

Коэффициент усиления по току в дБ:

Коэффициент усиления по напряжению в дБ:

Громкость звука. Чем отличаются dB от dBm?

image

В акустике «уровень интенсивности» или просто громкость звука L тоже измеряют в децибелах, при этом данный параметр является не абсолютным, а относительным! Всё потому, что сравнение ведётся с минимальным порогом слышимости человеческим ухом звука гармонического колебания — амплитудой звукового давления 20 мкПа. Поскольку интенсивность звука пропорциональна квадрату звукового давления можно написать:

где не ток, а интенсивность звукового давления звука с частотой 1 кГц, который приближенно соответствует порогу слышимости звука человеком.

Таким образом, когда говорят, что громкость звука равна 20 дБ, это означает, что интенсивность звуковой волны в 100 раз превышает порог слышимости звука человеком.

Кроме этого, в радиотехнике чрезвычайно распространена абсолютная величина измерения мощности dBm (русское дБм), которая измеряется относительно мощности в 1 мВт. Мощность определяется на номинальной нагрузке (для профессиональной техники — обычно 10 кОм для частот менее 10 МГц, для радиочастотной техники — 50 Ом или 75 Ом). Например, «выходная мощность усилительного каскада составляет 13 дБм» (то есть мощность, выделяющаяся на номинальной для этого усилительного каскада нагрузке, составляет примерно 20 мВт).

Разделяй и властвуй — раскладываем сигнал в спектр.

Пора переходить к более сложной теме — оценке искажений сигнала. Для начала придётся сделать небольшое вступление и поговорить о спектрах. Дело в том, что в звукотехнике и не только принято оперировать сигналами синусоидальной формы. Они часто встречаются в окружающем мире, поскольку огромное количество звуков создают колебания тех или иных предметов. Кроме того, строение слуховой системы человека отлично приспособлено для восприятия синусоидальных колебаний.

Любое синусоидальное колебание можно описать формулой:

где длина вектора, амплитуда колебаний, — начальный угол (фаза ) вектора в нулевой момент времени, — угловая скорость, которая равна:

Важно, что с помощью суммы синусоидальных сигналов с разной амплитудой, частотой и фазой, можно описать периодически повторяющиеся сигналы любой формы. Сигналы, частоты которых отличаются от основной в целое число раз, называются гармониками исходной частоты. Для сигнала с базовой частотой f, сигналы с частотами

будут являться чётными гармониками, а сигналы

Давайте для наглядности изобразим график пилообразного сигнала.

Для точного представления его через гармоники потребуется бесконечное число членов. На практике для анализа сигналов используют ограниченное число гармоник с наибольшей амплитудой. Наглядно посмотреть процесс построения пилообразного сигнала из гармоник можно на рисунке ниже.

А вот как формируется меандр, с точностью до пятидесятой гармоники…

Подробнее о гармониках можно почитать в замечательной статье пользователя dlinyj, а нам пора переходить наконец к искажениям.

Наиболее простым методом оценки искажений сигналов является подача на вход усилителя одного или суммы нескольких гармонических сигналов и анализ наблюдающихся гармонических сигналов на выходе.

Если на выходе усилителя присутствуют сигналы тех же гармоник, что и на входе, искажения считаются линейными, потому-что они сводятся к изменению амплитуды и фазы входного сигнала.

Нелинейные искажения добавляют в сигнал новые гармоники, что приводит к искажению формы входных сигналов.

Линейные искажения и полоса пропускания.

Коэффициент усиления К идеального усилителя не зависит от частоты, но в реальной жизни это далеко не так. Зависимость амплитуды от частоты называют амплитудно- частотной характеристикой — АЧХ и часто изображают в виде графика, где по вертикали откладывают коэффициент усиления по напряжению, а по горизонтали частоту. Изобразим на графике АЧХ типичного усилителя.

Снимают АЧХ, последовательно подавая на вход усилителя сигналы разных частот определённого уровня и измеряя уровень сигнала на выходе.

Диапазон частот ΔF, в пределах которого мощность усилителя уменьшается не более, чем в два раза от максимального значения, называют полосой пропускания усилителя.

Однако, на графике обычно откладывают коэффициент усиления по напряжению, а не по мощности. Если обозначить максимальный коэффициент усиления по напряжению, как , то в пределах полосы пропускания коэффициент не должен опускаться ниже чем:

Значения частоты и уровня сигналов, с которыми работает УНЧ, могут изменяться очень существенно, поэтому АЧХ обычно строят в логарифмических координатах, иногда его называют при этом ЛАЧХ.

Коэффициент усиления усилителя выражают в децибелах, а по оси абсцисс откладывают частоты через декаду (интервал частот отличающихся между собой в десять раз). Не правда ли так график выглядит не только симпатичнее, но и информативнее?

Усилитель не только неравномерно усиливает сигналы разных частот, но ещё и сдвигает фазу сигнала на разные значения, в зависимости от его частоты. Эту зависимость отражает фазочастотная характеристика усилителя.

При усилении колебаний только одной частоты, это вроде бы не страшно, но вот для более сложных сигналов приводит к существенным искажениям формы, хотя и не порождает новых гармоник. На картинке снизу показано как искажается двухчастотный сигнал.

Нелинейные искажения. КНИ, КГИ, THD.

image

Нелинейные искажения добавляют в сигнал ранее не существовавшие гармоники и, в результате, изменяют исходную форму сигнала. Пожалуй самым наглядным примером таких искажений может служить ограничение синусоидального сигнала по амплитуде, изображённое ниже.

На левом графике показаны искажения, вызванные наличием дополнительной чётной гармоники сигнала — ограничение амплитуды одной из полуволн сигнала. Исходный синусоидальный сигнал имеет номер 1, колебание второй гармоники 2, а полученный искажённый сигнал 3. На правом рисунке показан результат действия третьей гармоники — сигнал «обрезан» c двух сторон.

Во времена СССР нелинейные искажения усилителя было принято выражать с помощью коэффициента гармонических искажений КГИ. Определялся он следующим образом — на вход усилителя подавался сигнал определённой частоты, обычно 1000 Гц. Затем производилось вычисление уровня всех гармоник сигнала на выходе. За КГИ брали отношение среднеквадратичного напряжения суммы высших гармоник сигнала, кроме первой, к напряжению первой гармоники — той самой, частота которой равна частоте входного синусоидального сигнала.

Аналогичный зарубежный параметр именуется как — total harmonic distortion for fundamental frequency.

Коэффициент гармонических искажений (КГИ или )

Такая методика будет работать только в том случае, если входной сигнал будет идеальным и содержать только основную гармонику. Это условие удаётся выполнить не всегда, поэтому в современной международной практике гораздо большее распространение получил другой параметр оценки степени нелинейных искажений — КНИ.

Зарубежный аналог — total harmonic distortion for root mean square.

Коэффициент нелинейных искажений (КНИ или )

КНИ — величина равная отношению среднеквадратичной суммы спектральных компонент выходного сигнала, отсутствующих в спектре входного сигнала, к среднеквадратичной сумме всех спектральных компонент входного сигнала.

Как КНИ, так и КГИ относительные величины, которые измеряются в процентах.

Величины этих параметров связаны соотношением:

Для сигналов простой формы величина искажений может быть вычислена аналитически. Ниже приведены значения КНИ для наиболее распространённых в аудиотехнике сигналов (значение КГИ указано в скобках).

0 % (0%) — форма сигнала представляет собой идеальную синусоиду.
3 % (3 %) — форма сигнала отлична от синусоидальной, но искажения незаметны на глаз.
5 % (5 %) — отклонение формы сигнала от синусоидальной заметной на глаз по осциллограмме.
10 % (10 %) — стандартный уровень искажений, при котором считают реальную мощность (RMS) УМЗЧ, заметен на слух.
12 % (12 %) — идеально симметричный треугольный сигнал.
21 % (22 %) — «типичный» сигнал трапецеидальной или ступенчатой формы.[3]
43 % (48 %) — идеально симметричный прямоугольный сигнал (меандр).
63 % (80 %) — идеальный пилообразный сигнал.

Ещё лет двадцать назад для измерения гармонических искажений низкочастотного тракта использовались сложные дорогостоящие приборы. Один из них СК6-13 изображён на рисунке ниже.

Сегодня с этой задачей гораздо лучше справляется внешняя компьютерная аудиокарта с комплектом специализированного ПО, общей стоимостью не превышающие 500USD.

image

Спектр сигнала на входе звуковой карты при тестировании усилителя низкой частоты.

Амплитудная характеристика. Совсем коротко о шумах и помехах.

Зависимость выходного напряжения усилителя от его входного, при фиксированной частоте сигнала (обычно 1000Гц), называется амплитудной характеристикой.

Амплитудная характеристика идеального усилителя представляет из себя прямую, проходящую через начало координат, поскольку коэффициент его усиления является постоянной величиной при любых входных напряжениях.

На амплитудной характеристике реального усилителя имеется, как минимум, три разных участка. В нижней части она не доходит до нуля, так как усилитель имеет собственные шумы, которые становятся на малых уровнях громкости соизмеримы с амплитудой полезного сигнала.

В средней части (АВ) амплитудная характеристика близка к линейной. Это рабочий участок, в его пределах искажения формы сигнала будет минимальным.

В верхней части графика амплитудная характеристика также имеет изгиб, который обусловлен ограничением по выходной мощности усилителя.

Если амплитуда входного сигнала такова, что работа усилителя идет на изогнутых участках, то в выходном сигнале появляются нелинейные искажения. Чем больше нелинейность, тем сильнее искажается синусоидальное напряжение сигнала, т.е. на выходе усилителя появляются новые колебания (высшие гармоники).

Шумы в усилителях бывают разных видов и вызываются разными причинами.
Белый шум

Белый шум — это сигнал с равномерной спектральной плотностью на всех частотах. В пределах рабочего диапазона частот усилителей низкой частоты примером такого шума можно считать тепловой, вызванный хаотичным движением электронов. Спектр этого шума равномерен в очень широком диапазоне частот.

Розовый шум

Розовый шум известен также как мерцательный (фликкер-шум). Спектральная плотность мощности розового шума пропорциональна отношению 1/f (плотность обратно пропорциональна частоте), то есть он является равномерно убывающим в логарифмической шкале частот. Розовый шум генерируется как пассивными так и активными электронными компонентами, о природе его происхождения до сих пор спорят учёные.

Фон от внешних источников

Одна из основных причин шума — фон наводимый от посторонних источников, например от сети переменного тока 50 Гц. Он имеет основную гармонику в 50 Гц и кратные ей.

Самовозбуждение

Самовозбуждение отдельных каскадов усилителя способно генерировать шумы, как правило определённой частоты.

Стандарты выходной мощности УНЧ и акустики

Номинальная мощность

Западный аналог RMS (Root Mean Squared – среднеквадратичное значение ) В СССР определялась ГОСТом 23262-88 как усредненное значение подводимой электрической мощности синусоидального сигнала с частотой 1000 Гц, которое вызывает нелинейные искажения сигнала, не превышающие заданное значение КНИ (THD). Указывается как у АС, так и у усилителей. Обычно указанная мощность подгонялась под требования ГОСТ к классу сложности исполнения, при наилучшем сочетании измеряемых характеристик. Для разных классов устройств КНИ может варьироваться очень существенно, от 1 до 10 процентов. Может оказаться так, что система заявлена в 20 Ватт на канал, но измерения проведены при 10% КНИ. В итоге слушать акустику на данной мощности невозможно. Акустические системы способны воспроизводить сигнал на RMS-мощности длительное время.

Паспортная шумовая мощность

Иногда ещё называют синусоидальной. Ближайший западный аналог DIN — электрическая мощность, ограниченная исключительно тепловыми и механическими повреждениями (например: сползание витков звуковой катушки от перегрева, выгорание проводников в местах перегиба или спайки, обрыв гибких проводов и т.п.) при подведении розового шума через корректирующую цепь в течение 100 часов. Обычно DIN в 2-3 раза выше RMS.

Максимальная кратковременная мощность

Западный аналог PMPO (Peak Music Power Output – пиковая выходная музыкальная мощность). — электрическая мощность, которую громкоговорители АС выдерживают без повреждений (проверяется по отсутствию дребезжания) в течение короткого промежутка времени. В качестве испытательного сигнала используется розовый шум. Сигнал подается на АС в течение 2 сек. Испытания проводятся 60 раз с интервалом в 1 минуту. Данный вид мощности дает возможность судить о кратковременных перегрузках, которые может выдержать громкоговоритель АС в ситуациях, возникающих в процессе эксплуатации. Обычно в 10-20 раз выше DIN. Какая польза от того, узнает ли человек о том, что его система возможно перенесет коротенький, меньше секунды, синус низкой частоты с большой мощностью? Тем не менее, производители очень любят приводить именно этот параметр на упаковках и наклейках своей продукции… Огромные цифры данного параметра зачастую основаны исключительно на бурной фантазии маркетингового отдела производителей, и тут китайцы несомненно впереди планеты всей.

Максимальная долговременная мощность

Это электрическая мощность, которую выдерживают громкоговорители АС без повреждений в течение 1 мин. Испытания повторяют 10 раз с интервалом 2 минуты. Испытательный сигнал тот же.
Максимальная долговременная мощность определяется нарушением тепловой прочности громкоговорителей АС (сползанием витков звуковой катушки и др.).

Практика — лучший критерий истины. Разборки с аудиоцентром

Попробуем применить наши знания на практике. Заглянем в один очень известный интернет магазин и поищем там изделие ещё более известной фирмы из Страны Восходящего Солнца.

Ага — вот музыкальный центр футуристического дизайна продаётся всего за 10 000 руб. по очередной акции:

Из описания узнаём, что аппарат оснащён не только мощными колонками, но и сабвуфером.

“Он обеспечивает превосходную чистоту звучания при выборе любого уровня громкости. Кроме того, такая конфигурация помогает сделать звук насыщенным и объёмным.”

image

Захватывающе, пожалуй стоит посмотреть на параметры. “ Центр содержит две фронтальные колонки, каждая мощностью по 235 Ватт, и активный сабвуфер с мощностью 230 Ватт.” При этом размеры первых всего 31*23*21 см.

Да это же Соловей разбойник какой то, причём и по силе голоса и по размерам. В далёком 96 году на этом я бы свои исследования и остановил, а в дальнейшем, глядя на свои S90 и слушая самодельный Агеевский усилитель, бурно бы обсуждал с друзьями, насколько отстала от японской наша советская промышленность — лет на 50 или всё таки навсегда. Но сегодня с доступностью японской техники дело обстоит гораздо лучше и рухнули многие мифы с ней связанные, поэтому перед покупкой постараемся найти более объективные данные о качестве звука. На сайте про это ни слова. Кто бы сомневался! Зато есть инструкция по эксплуатации в формате pdf.

Cкачиваем и продолжаем поиски. Среди чрезвычайно ценной информации о том, что “лицензия на технологию звуковой кодировки была получена от Thompson” и каким концом вставлять батарейки с трудом, но удаётся таки найти нечто напоминающее технические параметры. Весьма скудная информация запрятана в недрах документа, ближе к концу.

Привожу её дословно, в виде скриншота, поскольку, начиная с этого момента, у меня стали возникать серьёзные вопросы, как к приведённым цифрам не смотря на то, что они подтверждены сертификатом соответствия, так и к их интерпретации.

Дело в том, что чуть ниже было написано, что потребляемая от сети переменного тока мощность первой системы составляет 90 ватт, а второй вообще 75. Хм.

image

Изобретён вечный двигатель третьего рода? А может в корпусе музыкального центра прячутся аккумуляторы? Да не похоже — заявленный вес аппарата без акустики всего три кило. Тогда, как же потребляя 90 ватт от сети, можно получить на выходе 700 загадочных ватт (для справок) или хотя бы жалких, но вполне осязаемых 120 номинальных. Ведь при этом усилитель должен обладать КПД порядка 150 процентов, даже с отключенным сабвуфером! Но на практике этот параметр редко превышает планку в 75.

Попробуем применить полученную из статьи информацию на практике

Заявленная мощность для справки 235+235+230=700 — это явно PMPO. С номинальной ясности много меньше. Судя по определению это номинальная мощность, но не может она быть 60+60 только для двух основных каналов, без учёта сабвуфера, при номинальной мощности потребления в 90 ватт. Это всё больше напоминает уже не маркетинговую уловку, а откровенную ложь. Судя по габаритам и негласному правилу, соотношения RMS и PMPO, реальная номинальная мощность этого центра должна составлять 12-15 ватт на канал, а общая не превышать 45. Возникает закономерный вопрос — как можно доверять паспортным данным тайваньских и китайских производителей, когда даже известная японская фирма такое себе позволяет?

Покупать такой аппарат или нет — решение зависит от вас. Если для того, чтобы ставить по утрам на уши соседей по даче — да. В противном случае, без предварительного прослушивания нескольких музыкальных композиций в разных жанрах, я бы не рекомендовал.

Чайник дёгтя в банке мёда.

Казалось бы, мы имеем почти исчерпывающий список параметров, необходимых для оценки мощности и качества звука. Но, при более пристальном внимании, это оказывается далеко не так, по целому ряду причин:

    Многие параметры больше подходят не столько для объективного отражения качества сигнала, сколько для удобства измерения. Большинство проводятся на частоте 1000 Гц, которая очень удобна для получения наилучших численных результатов. Она располагается далеко от частоты фона электрической сети в 50 Гц и в самом линейном участке частотного диапазона усилителя.

Пора закругляться, статья и так получилась чрезмерно длинной!

Разговор об оценке качества и причинах искажений усилителей низкой частоты мы продолжим в следующей статье. Вооружившись минимальным багажом знаний можно переходить к таким интересным темам как интермодуляционные искажения и их связь с глубиной обратной связи!

В заключение хочется выразить искреннюю благодарность Роману Парпалак parpalak за его проект онлайн-редактора с поддержкой латеха и маркдауна. Без этого инструмента и так непростой труд по внедрению математических формул в текст стал бы во истину адским.

  • Физика
  • Звук
  • Электроника для начинающих

Параметры усилителей

До сих пор мы рассматривали параметры и характеристики, описывающие разнообразные свойства транзисторов как основных усилительных элементов в составе электронных усилителей. Однако существуют показатели, по которым оценивается работа всего такого усилителя (или функционально законченных отдельных его каскадов) в целом. Данные параметры зависят не только от свойств применяемых в усилителе транзисторов, но и от качества самой принципиальной схемы и точности ее настройки.

К числу основных электрических показателей, характеризующих работу усилителя, относятся следующие:

  • коэффициент передачи или коэффициент усиления;
  • динамическая и амплитудная характеристики;
  • динамический диапазон;
  • предельная чувствительность;
  • амплитудно-частотная характеристика;
  • фазочастотная характеристика;
  • амплитудно-фазовая характеристика;
  • линейные искажения: оцениваются соответствующими коэффициентами линейных (частотных и фазовых) искажений;
  • нелинейные искажения: оцениваются разнообразными коэффициентами (коэффициент нелинейных искажений, коэффициент интермодуляции и т.п.).

Коэффициент передачи

Коэффициент передачи — это функция, определяемая как отношение выходного сигнала усилителя к его входному сигналу. В зависимости от формы математического представления самих сигналов различаются и формы представления коэффициента передачи (наиболее распространены операторные формы по Фурье или Лапласу, а соответствующие коэффициенты передачи иногда называют операторными коэффициентами передачи).

При рассмотрении высоколинейных схем, которые не вносят в усиливаемый сигнал амплитудных искажений и фазовых сдвигов, вместо комплексной функции операторного коэффициента передачи оперируют более понятными, имеющими достаточно простую интерпретацию коэффициентами усиления. Различают:

  • коэффициент усиления по напряжению
    \(_U = \frac>>>> \) , где \(U_>\) , \(U_>\) — амплитудные или действующие значения выходного и входного сигналов;
  • коэффициент усиления по току
    \(_I = \frac>> \) , где \(I_>\) , \(I_>\) — амплитудные или действующие значения выходного и входного токов;
  • коэффициент усиления по мощности \(_P = \frac>>==\frac<<>>>>><<>>>>> \) .

Довольно часто коэффициенты усиления выражают в логарифмических единицах — децибелах, [дБ]:

Логарифмические единицы удобны тем, что если известны коэффициенты усиления отдельных каскадов или узлов усилителя, то его общий логарифмический коэффициент усиления находится как алгебраическая сумма логарифмических коэффициентов усиления отдельных каскадов:

\( K_=K_1\cdot K_2 \cdot K_3 \cdot \ldots \) ;

\( K_\scriptsize\normalsize = K_\scriptsize\normalsize + K_\scriptsize\normalsize +K_\scriptsize\normalsize + < \ldots>\) .

Более того, логарифмические единицы оказались настолько удобны при проектировании схем, что появился даже ряд производных от них величин. Например, мощность сигнала в схеме часто оценивается по отношению к уровню мощности в 1 мВт. При этом со знаком «+» или «-» пишется разность в децибелах текущего уровня мощности от уровня 1 мВт, который принимается за точку отсчета. Такие единицы принято обозначать дБм (децибел милливатт), т.е., например, сигнал мощностью 1 мВт в таких единицах равен 0 дБм, сигнал 10 мВт — +10 дБм, 0,01 мВт — -20 дБм и т.п. Точно так же можно выражать и напряжение сигнала, при этом только необходимо зафиксировать сопротивление нагрузки, на котором обеспечивается данное напряжение. В высокочастотной технике используются единицы дБмкВ (децибел микровольт). Здесь за нулевую принимается точка в 1 мкВ, а сопротивление нагрузки всегда считается равным 50 Ом.

Динамическая и амплитудная характеристики

Динамическая характеристика представляет собой зависимость мгновенного значения выходного напряжения \(U_\left(\right) \) от мгновенного значения входного напряжения \(U_\left(\right) \) при гармоническом входном воздействии. Зависимость амплитудного значения первой гармоники выходного напряжения от амплитуды синусоидального входного напряжения \( U__>=\left(>\right) \) называется амплитудной характеристикой. Точка окончания линейного участка динамической характеристики носит название точки компрессии.

Динамический диапазон

Отношение (в децибелах) наибольшего допустимого значения амплитуды входного напряжения к ее наименьшему допустимому значению называется динамическим диапазоном амплитуд (или просто динамическим диапазоном). Максимально допустимая амплитуда входного напряжения усилителя ограничена искажениями сигнала, вызванными выходом рабочих точек усилительных каскадов за пределы линейного участка характеристики управления (точка компрессии). В то же время минимальная амплитуда обычно ограничена по величине (снизу) уровнем собственных шумов усилителя, на фоне которых полезный сигнал не удается выделить с надлежащим качеством.

Амплитудно-частотная характеристика

Амплитудно-частотная характеристика (АЧХ) — зависимость модуля коэффициента передачи от частоты входного сигнала.

Фазочастотная характеристика

Фазочастотная характеристика (ФЧХ) — зависимость сдвига фазы между входным и выходным напряжением от частоты или фаза коэффициента передачи.

Рабочий диапазон частот

Рабочий диапазон частот (диапазон пропускаемых частот или полоса пропускания) представляет собой некоторый интервал значений частоты от \(f_н \) до \(f_в \), внутри которого коэффициент усиления изменяется по определенному закону с известной степенью точности. Например, высококачественный усилитель низкой частоты должен характеризоваться законом \( = \) в диапазоне частот сигнала от \(_=\) до \(_=\). Если к усилителю не предъявляются какие-либо специальные требования, то рабочий диапазон частот определяют на уровне 3 дБ, т.е. границами полосы пропускания являются частоты, на которых коэффициент усиления уменьшается не более чем в \(\sqrt\approx\) раза.

Амплитудно-фазовая характеристика

Амплитудно-фазовая характеристика (АФХ) — зависимость коэффициента усиления и фазового сдвига усилителя от частоты, построенная в полярной системе координат. Она объединяет в себе амплитудно-частотную и фазочастотную характеристики усилителя и представляет собой годограф комплексного коэффициента передачи.

Понятия об АЧХ, ФЧХ и АФХ становятся определенными лишь по отношению к линейным усилителям.

Переходная характеристика

Переходная характеристика — зависимость от времени выходного напряжения усилителя, на вход которого подан мгновенный скачок напряжения. Эта характеристика дает возможность определить переходные искажения, которые в области малых времен характеризуются фронтом выходного напряжения и оцениваются временем установления и выбросом фронта. В области больших времен искажается вершина импульса. Эти искажения оценивают относительным (в %) значением спада плоской вершины к моменту окончания импульса.

Линейные искажения

Отклонения частотных характерастик от идеальных в рабочем диапазоне частот называются частотными искажениями. Мерой частотных искажений является нормированное (относительное) усиление на границах рабочего диапазона частот, которое определяется как отношение коэффициента усиления на границе рабочего диапазона \(\left(K_в>\right)\) к коэффициенту усиления на средней рабочей частоте (\(K_0\)):

Часто используют величину, обратную нормированному усилению. Она носит название коэффициента частотных искажений:

Вследствие отклонения реальной фазочастотной характеристики усилителя от идеальной в нем имеют место фазовые искажения. Они вызваны неодинаковым сдвигом по фазе отдельных гармонических составляющих спектра сигнала сложной формы, что обусловлено наличием в цепях усилителя реактивных компонентов и инерционными свойствами полупроводниковых приборов. В результате такого неодинакового сдвига по фазе отдельных гармоник форма сигнала на выходе усилителя может стать существенно отличной от формы входного сигнала. Если вносимый усилителем фазовый сдвиг на частоте \(\)-й гармоники пропорционален частоте \(\varphi_ = \omega\tau \), то сигнал на выходе усилителя окажется смещенным во времени на величину \(t\). Ее называют временем задержки или временем фазового пробега. Таким образом, если \(\varphi \) — вносимый усилителем фазовый сдвиг на частоте \(\)-й гармоники — пропорционален частоте (\(\varphi_ = \omega\tau \)), то взаимное расположение гармоник, а следовательно, и форма сигнала не подвергаются изменению.

На практике можно лишь с той или иной точностью приблизиться к идеальным частотной и фазовой характеристикам в полосе пропускания \(\Delta = f_в — f_н\), в пределах которой находится спектр усиливаемого сигнала.

Нелинейные искажения

Искажения, возникающие в усилителях вследствие нелинейности передаточных характеристик электронных приборов и характеристик намагничивания сердечников трансформаторов, называются нелинейными искажениями. При наличии нелинейных искажений в усилителе (в реальных усилителях они есть всегда) на его выходе возникают новые частоты (гармоники), отсутствующие во входном сигнале.

Общий уровень нелинейных искажений количественно оценивается коэффициентом нелинейных искажений (коэффициентом гармоник):

где \(U_\), \(U_\), \(U_\), . — амплитуды 1-й, 2-й, 3-й и т.д. гармоник выходного сигнала.

Практически имеют значение только вторая и третья гармоники. Обычно коэффициент нелинейных искажений выражается в процентах. Например, для усилителей низкой частоты простейшей бытовой радиоаппаратуры максимальным приемлемым уровнем можно считать 15. 20%, а для высококачественных усилителей современной стереоаппаратуры коэффициент нелинейных искажений составляет десятые или даже сотые доли процента.

Еще один вид нелинейных искажений обусловлен появлением в выходном сигнале т.н. комбинационных частот, т.е. частот, получающихся как сумма или разность между любыми (в т.ч. и первыми) гармониками различных сигналов, присутствующих на входе усилителя. Такие искажения принято называть интермодуляционными искажениями. На практике имеют значение интермодуляционные искажения второго и третьего порядков (если \(_1\) и \(_2\) — частоты, присутствующие на входе, то интермодуляционные искажения второго порядка обусловлены наличием на выходе усилителя сигналов с частотами \(f_1 \pm f_2\), а интермодуляционные искажения третьего порядка — с частотами \(2f_1 \pm f_2\) и \(2f_2 \pm f_1\)). Коэффициентом интермодуляции называется отношение мощности интермодуляционных составляющих на выходе усилителя к минимально возможной выходной мощности полезного сигнала, превышающей уровень собственных шумов усилителя.

Абсолютный уровень интермодуляционных искажений принято оценивать по положению т.н. интермодуляционных точек. Если линейный участок динамической характеристики условно продлить в области высокой входной мощности (когда эта характеристика на самом деле уже не линейна) и одновременно наложить на этот график линию, отражающую суммарную мощность интермодуляционных составляющих второго (третьего) порядка, то точка пересечения этой линии с продленным графиком называется, соответственно, точкой интермодуляции второго (третьего) порядка.

В реальных схемах интермодуляционные искажения второго порядка часто растут медленнее интермодуляционных искажений третьего прядка. Так что интермодуляционная точка третьего порядка лежит ниже (соответствует меньшему уровню входной мощности) интермодуляционной точки второго порядка и имеет большее значение.

Помимо интермодуляционных точек часто говорят о соответствующих им динамических диапазонах по интермодуляции. Выше мы уже дали определение амплитудного динамического диапазона как отношения амплитуд сигнала в точке компрессии и в точке его возможного минимума (определяется собственными шумами). Аналогично вводится и понятие динамического диапазона по интермодуляции, т.е. диапазона уровней мощности входного сигнала, в котором обеспечивается его «безынтермодуляционная» обработка. Снизу такой диапазон также ограничен уровнем собственных шумов усилителя. А вот его верхняя граница определяется как точка, в которой уровень соответствующих интермодуляционных помех становится выше уровня собственных шумов, т.е. эти помехи начинают оказывать на выходной сигнал влияние большее, чем собственные шумы.

Коэффициент шума

Коэффициент шума характеризует уровень шумов (искажений случайного характера, обусловленных различными механическими, тепловыми, молекулярными, электронными и т.п. процессами в радиокомпонентах и соединительных проводниках), привносимых в сигнал при его прохождении через усилитель. В реальных условиях сигнал уже содержит шумы, когда поступает на вход усилителя. Поэтому коэффициент шума определяется следующим образом:

\(P_>\) — мощность шумов на входе усилителя;

\(P_>\) — мощность шумов на выходе усилителя;

\(P_>\) — мощность полезного сигнала на входе усилителя;

\(P_>\) — мощность полезного сигнала на выходе усилителя;

\(P_>\) — собственная мощность шумов (мощность добавляемых в сигнал шумов).

Коэффициент полезного действия

Коэффициент полезного действия (КПД) отражает эффективность усилителя. Он равен отношению полезной выходной мощности (мощности полезного сигнала) к мощности, затрачиваемой источником питания на функционирование усилителя:

Выходная мощность

Номинальная выходная мощность \(\left(P__>\right)\) — мощность полезного сигнала на выходе усилителя при работе на расчетную нагрузку и заданном коэффициенте гармоник или нелинейных искажений, т.е.максимальная мощность, при которой не превышается заданный уровень искажений.

Входные и выходные параметры усилителя

Помимо параметров, описывающих работу усилителя в целом, не менее важными являются характеристики его входной и выходной цепей. К ним относят в первую очередь входное и выходное сопротивления усилителя:

\(U_<>__>\), \(I_<>__>\) — номинальные амплитудные значения напряжения и тока первой гармоники на выходе усилителя.

В высокочастотных усилителях значительными становятся реактивные составляющие, поэтому здесь должны рассматриваться комплексные амплитуды:

Комплексные величины \(Z_\), \(Z_\) называют, соответственно, входным и выходным импедансом усилителя. В диапазоне СВЧ, где анализ цепей производится в терминах их волновых свойств, для оценки параметров входных и выходных цепей усилителя могут применяться соответствующие коэффициенты отражения по входу/выходу.

Тема: Усилитель Jean Hiraga

Показать/скрыть первое сообщение.

06.02.2020, 00:37 #1

alnikst вне форума

Завсегдатай

Автор темы

Регистрация 21.02.2013 Адрес Бобруйск Возраст 51 Сообщений 1,359

По умолчаниюУсилитель Jean Hiraga

Вариант усилителя класса А в различных модификациях (с разными выходными транзисторами) был предложен популярным радиолюбителем Жаном Хирага (Jean Hiraga) и опубликован на страницах французкого журнала L»Audiophile. В качестве вступления к обсуждению оригинальной и модифицированных схем приведу слова автора этого усилителя: «Наиболее интересным на пути создания усилителя является не сама схема, а ее философия, требуемая цель и средства, с помощью которых вы пытаетесь ее достичь. Простую и хорошо изученную схему все труднее представить, чем сложную схему и существует множество хороших примеров ламповых и транзисторных усилителей, иллюстрирующих такой подход.» . Полный вариант перевода статьи прилагаю в архиве.
В журнале Радиоаматор №№ 11,12/2019 вышла статья А. Петрова с анализом достоинств и недостатков оригинальной схемы Hiraga.pdf. В последующих номерах данного журнала №№ 1,2/2020 опубликован модернизированный вариант схемы Hiraga-M .pdf. Забегая вперед, скажу что есть вариант схемы в классе АВ со значительно более низким током покоя.
Я собрал промежуточный вариант схемы, назовем его М1. Целью и философией было желание собрать и послушать усилитель класса А с коротким трактом, без разделительных конденсаторов на пути сигнала и без применения интегратора. Данной философии я придерживаюсь и сейчас. Звук усилителя был очень хорош, и мне стало интересно повторить еще один вариант модернизированной А. Петровым схемы М2. В этом варианте чуть больше активных элементов, но тоже замечательный звук. Хорошо было бы произвести измерения и сравнительное прослушивание данного усилителя с другими образцами. В архиве прилагаю модели и печатные платы обоих собранных вариантов.
Выражаю благодарность А. Петрову за проделанную работу по анализу и модернизации рассматриваемой схемы.
Надеюсь, что данная схема в различных ее вариантах заинтересует участников форума. Буду благодарен за конструктивные советы по ее дальнейшей модернизации.

Миниатюры

Миниатюры

Вложения

Вложения

  • Jean Hiraga.rar (12.61 Мб, Просмотров: 899)

Последний раз редактировалось alnikst; 03.03.2020 в 21:18 .

«Каждый из нас это частный случай музыки и помех . »
В. Полозкова

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *